Bio-Inspired Surfaces for Fouling Resistance, Their Applications, Challenges, and Opportunities

Research Article
Open access

Bio-Inspired Surfaces for Fouling Resistance, Their Applications, Challenges, and Opportunities

Kewei Wang 1* , Zijian Fan 2 , Haochen Xie 3
  • 1 Science, University of Waterloo, Waterloo, N2L 3W5, Canada    
  • 2 School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510641, China    
  • 3 Department of Materials, Wuhan University of Science and Technology, Wuhan, 430081, China    
  • *corresponding author k8wang@uwaterloo.ca
Published on 20 June 2025 | https://doi.org/10.54254/2755-2721/2025.24245
ACE Vol.168
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-80590-205-8
ISBN (Online): 978-1-80590-206-5

Abstract

Bio-inspired surfaces are developed to combat the unwanted buildup of substances like sediment, scale, or biological organisms on equipment and surfaces across various industries. This discussion encompasses various types of fouling, categorized by Young's modulus into hard and soft, and delves into crucial factors such as surface energy and wettability, which are essential for material development. We have identified a range of anti-fouling techniques from nature, inspiring the creation of synthetic surfaces based on these models. Despite these innovations, challenges such as durability, cost, and effectiveness against a broad spectrum of fouling organisms remain. To address these issues comprehensively, a strategy that integrates both mechanical properties and chemical treatments is essential, enhancing the performance and longevity of these bio-inspired surfaces.

Keywords:

Bio-inspired surfaces, Fouling resistance, Marine biofouling, Antifouling technologies, Environmental sustainability

Wang,K.;Fan,Z.;Xie,H. (2025). Bio-Inspired Surfaces for Fouling Resistance, Their Applications, Challenges, and Opportunities. Applied and Computational Engineering,168,1-25.
Export citation

References

[1]. Schultz, M. P.; Bendick, J. A.; Holm, E. R.; Hertel, W. M. Economic Impact of Biofouling on a Naval Surface Ship. Biofouling 2011, 27 (1), 87–98. https://doi.org/10.1080/08927014.2010.542809.

[2]. Selim, M. S.; Shenashen, M. A.; El-Safty, S. A.; Higazy, S. A.; Selim, M. M.; Isago, H.; Elmarakbi, A. Recent Progress in Marine Foul-Release Polymeric Nanocomposite Coatings. Progress in Materials Science 2017, 87, 1–32. https://doi.org/10.1016/j.pmatsci.2017.02.001.

[3]. Aiyejina, A.; Chakrabarti, D. P.; Pilgrim, A.; Sastry, M. K. S. Wax Formation in Oil Pipelines: A Critical Review. International Journal of Multiphase Flow 2011, 37 (7), 671–694. https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.007.

[4]. Johanson, W. G. Nosocomial Respiratory Infections with Gram-Negative Bacilli: The Significance of Colonization of the Respiratory Tract. Ann Intern Med 1972, 77 (5), 701. https://doi.org/10.7326/0003-4819-77-5-701.

[5]. Percival, S. L.; Suleman, L.; Vuotto, C.; Donelli, G. Healthcare-Associated Infections, Medical Devices and Biofilms: Risk, Tolerance and Control. Journal of Medical Microbiology 2015, 64 (4), 323–334. https://doi.org/10.1099/jmm.0.000032.

[6]. Callow, M. E.; Callow, J. A. Marine Biofouling: A Sticky Problem. Marine biofouling.

[7]. Leontaritis, K. J.; Ali Mansoori, G. Asphaltene Deposition: A Survey of Field Experiences and Research Approaches. Journal of Petroleum Science and Engineering 1988, 1 (3), 229–239. https://doi.org/10.1016/0920-4105(88)90013-7.

[8]. Flint, S.; Bremer, P.; Brooks, J.; Palmer, J.; Sadiq, F. A.; Seale, B.; Teh, K. H.; Wu, S.; Md Zain, S. N. Bacterial Fouling in Dairy Processing. International Dairy Journal 2020, 101, 104593. https://doi.org/10.1016/j.idairyj.2019.104593.

[9]. Brzozowska, A. M.; Maassen, S.; Goh Zhi Rong, R.; Benke, P. I.; Lim, C.-S.; Marzinelli, E. M.; Jańczewski, D.; Teo, S. L.-M.; Vancso, G. J. Effect of Variations in Micropatterns and Surface Modulus on Marine Fouling of Engineering Polymers. ACS Appl. Mater. Interfaces 2017, 9 (20), 17508–17516. https://doi.org/10.1021/acsami.6b14262.

[10]. Walker, G. C.; Sun, Y.; Guo, S.; Finlay, J. A.; Callow, M. E.; Callow, J. A. Surface Mechanical Properties of the Spore Adhesive of the Green Alga Ulva. The Journal of Adhesion 2005, 81 (10–11), 1101–1118. https://doi.org/10.1080/00218460500310846.

[11]. Callow, J. A.; Callow, M. E. Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings. Nat Commun 2011, 2 (1), 244. https://doi.org/10.1038/ncomms1251.

[12]. Guenther, J.; De Nys, R. Surface Microtopographies of Tropical Sea Stars: Lack of an Efficient Physical Defence Mechanism against Fouling. Biofouling 2007, 23 (6), 419–429. https://doi.org/10.1080/08927010701570071.

[13]. Guenther, J.; De Nys, R. Surface Microtopographies of Tropical Sea Stars: Lack of an Efficient Physical Defence Mechanism against Fouling. Biofouling 2007, 23 (6), 419–429. https://doi.org/10.1080/08927010701570071.

[14]. Holm, E. R.; Kavanagh, C. J.; Meyer, A. E.; Wiebe, D.; Nedved, B. T.; Wendt, D.; Smith, C. M.; Hadfield, M. G.; Swain, G.; Wood, C. D.; Truby, K.; Stein, J.; Montemarano, J. Interspecific Variation in Patterns of Adhesion of Marine Fouling to Silicone Surfaces. Biofouling 2006, 22 (4), 233–243. https://doi.org/10.1080/08927010600826129.

[15]. Holm, E. R.; Kavanagh, C. J.; Meyer, A. E.; Wiebe, D.; Nedved, B. T.; Wendt, D.; Smith, C. M.; Hadfield, M. G.; Swain, G.; Wood, C. D.; Truby, K.; Stein, J.; Montemarano, J. Interspecific Variation in Patterns of Adhesion of Marine Fouling to Silicone Surfaces. Biofouling 2006, 22 (4), 233–243. https://doi.org/10.1080/08927010600826129.

[16]. Vellwock, A. E.; Yao, H. Biomimetic and Bioinspired Surface Topographies as a Green Strategy for Combating Biofouling: A Review. Bioinspir. Biomim. 2021, 16 (4), 041003. https://doi.org/10.1088/1748-3190/ac060f.

[17]. Rodríguez-López, P.; Barrenengoa, A. E.; Pascual-Sáez, S.; Cabo, M. L. Efficacy of Synthetic Furanones on Listeria Monocytogenes Biofilm Formation. Foods 2019, 8 (12), 647. https://doi.org/10.3390/foods8120647.

[18]. Xu, Y.; He, H.; Schulz, S.; Liu, X.; Fusetani, N.; Xiong, H.; Xiao, X.; Qian, P.-Y. Potent Antifouling Compounds Produced by Marine Streptomyces. Bioresource Technology 2010, 101 (4), 1331–1336. https://doi.org/10.1016/j.biortech.2009.09.046.

[19]. Jin, H.; Tian, L.; Bing, W.; Zhao, J.; Ren, L. Bioinspired Marine Antifouling Coatings: Status, Prospects, and Future. Progress in Materials Science 2022, 124, 100889. https://doi.org/10.1016/j.pmatsci.2021.100889.

[20]. Ai, X.; Mei, L.; Ma, C.; Zhang, G. Degradable Hyperbranched Polymer with Fouling Resistance for Antifouling Coatings. Progress in Organic Coatings 2021, 153, 106141. https://doi.org/10.1016/j.porgcoat.2021.106141.

[21]. Thomason, J. C.; Letissier, M. D. A.; Thomason, P. O.; Field, S. N. Optimising Settlement Tiles: The Effects of Surface Texture and Energy, Orientation and Deployment Duration upon the Fouling Community. Biofouling 2002, 18 (4), 293–304. https://doi.org/10.1080/0892701021000034409.

[22]. Lappin‐Scott, H. M.; Costerton, J. W. Bacterial Biofilms and Surface Fouling. Biofouling 1989, 1 (4), 323–342. https://doi.org/10.1080/08927018909378120.

[23]. Rafsanjani, A.; Zhang, Y.; Liu, B.; Rubinstein, S. M.; Bertoldi, K. Kirigami Skins Make a Simple Soft Actuator Crawl. Sci. Robot. 2018, 3 (15), eaar7555. https://doi.org/10.1126/scirobotics.aar7555.

[24]. Rafsanjani, A.; Zhang, Y.; Liu, B.; Rubinstein, S. M.; Bertoldi, K. Kirigami Skins Make a Simple Soft Actuator Crawl. Sci. Robot. 2018, 3 (15), eaar7555. https://doi.org/10.1126/scirobotics.aar7555.

[25]. Young1805.

[26]. Kwok, D. Y.; Neumann, A. W. Contact Angle Measurement and Contact Angle Interpretation. Advances in Colloid and Interface Science 1999, 81 (3), 167–249. https://doi.org/10.1016/S0001-8686(98)00087-6.

[27]. Doshi, B.; Sillanpää, M.; Kalliola, S. A Review of Bio-Based Materials for Oil Spill Treatment. Water Research 2018, 135, 262–277. https://doi.org/10.1016/j.watres.2018.02.034.

[28]. Drelich, J.; Chibowski, E.; Meng, D. D.; Terpilowski, K. Hydrophilic and Superhydrophilic Surfaces and Materials. Soft Matter 2011, 7 (21), 9804. https://doi.org/10.1039/c1sm05849e.

[29]. Lee, S.-M.; Kwon, T. H. Effects of Intrinsic Hydrophobicity on Wettability of Polymer Replicas of a Superhydrophobic Lotus Leaf. J. Micromech. Microeng. 2007, 17 (4), 687–692. https://doi.org/10.1088/0960-1317/17/4/003.

[30]. Koch, K.; Barthlott, W. Superhydrophobic and Superhydrophilic Plant Surfaces: An Inspiration for Biomimetic Materials. Phil. Trans. R. Soc. A. 2009, 367 (1893), 1487–1509. https://doi.org/10.1098/rsta.2009.0022.

[31]. Wenzel, R. N. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Ind. Eng. Chem. 1936, 28 (8), 988–994. https://doi.org/10.1021/ie50320a024.

[32]. Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546. https://doi.org/10.1039/tf9444000546.

[33]. Manukyan, G.; Oh, J. M.; Van Den Ende, D.; Lammertink, R. G. H.; Mugele, F. Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions. Phys. Rev. Lett. 2011, 106 (1), 014501. https://doi.org/10.1103/PhysRevLett.106.014501.

[34]. Koishi, T.; Yasuoka, K.; Fujikawa, S.; Ebisuzaki, T.; Zeng, X. C. Coexistence and Transition between Cassie and Wenzel State on Pillared Hydrophobic Surface. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (21), 8435–8440. https://doi.org/10.1073/pnas.0902027106.

[35]. Murakami, D.; Jinnai, H.; Takahara, A. Wetting Transition from the Cassie–Baxter State to the Wenzel State on Textured Polymer Surfaces. Langmuir 2014, 30 (8), 2061–2067. https://doi.org/10.1021/la4049067.

[36]. Jeevahan, J.; Chandrasekaran, M.; Britto Joseph, G.; Durairaj, R. B.; Mageshwaran, G. Superhydrophobic Surfaces: A Review on Fundamentals, Applications, and Challenges. J Coat Technol Res 2018, 15 (2), 231–250. https://doi.org/10.1007/s11998-017-0011-x.

[37]. Zhang, L.; Zhao, N.; Xu, J. Fabrication and Application of Superhydrophilic Surfaces: A Review. Journal of Adhesion Science and Technology 2014, 28 (8–9), 769–790. https://doi.org/10.1080/01694243.2012.697714.

[38]. Zhang, L.; Zhao, N.; Xu, J. Fabrication and Application of Superhydrophilic Surfaces: A Review. Journal of Adhesion Science and Technology 2014, 28 (8–9), 769–790. https://doi.org/10.1080/01694243.2012.697714.

[39]. Jin, H.; Tian, L.; Bing, W.; Zhao, J.; Ren, L. Toward the Application of Graphene for Combating Marine Biofouling. Advanced Sustainable Systems 2021, 5 (1), 2000076. https://doi.org/10.1002/adsu.202000076.

[40]. Jin, H.; Tian, L.; Bing, W.; Zhao, J.; Ren, L. Toward the Application of Graphene for Combating Marine Biofouling. Advanced Sustainable Systems 2021, 5 (1), 2000076. https://doi.org/10.1002/adsu.202000076.

[41]. Parra, C.; Dorta, F.; Jimenez, E.; Henríquez, R.; Ramírez, C.; Rojas, R.; Villalobos, P. A Nanomolecular Approach to Decrease Adhesion of Biofouling-Producing Bacteria to Graphene-Coated Material. J Nanobiotechnol 2015, 13 (1), 82. https://doi.org/10.1186/s12951-015-0137-x.

[42]. Brady, R. F.; Singer, I. L. Mechanical Factors Favoring Release from Fouling Release Coatings. Biofouling 2000, 15 (1–3), 73–81. https://doi.org/10.1080/08927010009386299.

[43]. Brady, R. F. A Fracture Mechanical Analysis of Fouling Release from Nontoxic Antifouling Coatings. Progress in Organic Coatings 2001, 43 (1–3), 188–192. https://doi.org/10.1016/S0300-9440(01)00180-1.

[44]. Vladkova, T. Surface Modification Approach to Control Biofouling. In Marine and Industrial Biofouling; Flemming, H.-C., Murthy, P. S., Venkatesan, R., Cooksey, K., Eds.; Springer Series on Biofilms; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; Vol. 4, pp 135–163. https://doi.org/10.1007/978-3-540-69796-1_7.

[45]. Kendall, K. The Adhesion and Surface Energy of Elastic Solids. J. Phys. D: Appl. Phys. 1971, 4 (8), 1186–1195. https://doi.org/10.1088/0022-3727/4/8/320.

[46]. Zhang, J. W.; Lin, C. G.; Wang, L.; Zheng, J. Y.; Xu, F. L. The Influence of Water Contact Angle on the Colonization of Diatoms (Navicula Sp and Pinnularia Sp) and Ulva Spores (Pertusa). KEM 2013, 562–565, 1229–1233. https://doi.org/10.4028/www.scientific.net/KEM.562-565.1229.

[47]. Masaki, T.; Fujita, D.; Hagen, N. T. The Surface Ultrastructure and Epithallíum Shedding of Crustose Coralline Algae in an `Isoyake’ Area of Southwestern Hokkaido, Japan.

[48]. Bandyopadhyay, P. R.; Hellum, A. M. Modeling How Shark and Dolphin Skin Patterns Control Transitional Wall-Turbulence Vorticity Patterns Using Spatiotemporal Phase Reset Mechanisms. Sci Rep 2014, 4 (1), 6650. https://doi.org/10.1038/srep06650.

[49]. Omae, I. General Aspects of Natural Products Antifoulants in the Environment. In Antifouling Paint Biocides; Konstantinou, I. K., Ed.; The Handbook of Environmental Chemistry; Springer Berlin Heidelberg, 2006; Vol. 5O, pp 227–262. https://doi.org/10.1007/698_5_057.

[50]. Schlenoff, J. B. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 2014, 30 (32), 9625–9636. https://doi.org/10.1021/la500057j.

[51]. Elavarasi, K.; Ranjini, S.; Rajagopal, T.; Rameshkumar, G.; Ponmanickam, P. Bactericidal Proteins of Skin Mucus and Skin Extracts from Fresh Water Fishes, Clarias Batrachus and Tilapia Mossambicus. The Thai Journal of Pharmaceutical Sciences 2013, 37 (4), 194–200. https://doi.org/10.56808/3027-7922.2078.

[52]. Zhao, H.; Sun, Q.; Deng, X.; Cui, J. Earthworm‐Inspired Rough Polymer Coatings with Self‐Replenishing Lubrication for Adaptive Friction‐Reduction and Antifouling Surfaces. Advanced Materials 2018, 30 (29), 1802141. https://doi.org/10.1002/adma.201802141.

[53]. Zhao, H.; Sun, Q.; Deng, X.; Cui, J. Earthworm‐Inspired Rough Polymer Coatings with Self‐Replenishing Lubrication for Adaptive Friction‐Reduction and Antifouling Surfaces. Advanced Materials 2018, 30 (29), 1802141. https://doi.org/10.1002/adma.201802141.

[54]. Clasen, A.; Kesel, A. B. Microstructural Surface Properties of Drifting Seeds—A Model for Non-Toxic Antifouling Solutions. Biomimetics 2019, 4 (2), 37. https://doi.org/10.3390/biomimetics4020037.

[55]. Fu, J.; Zhang, H.; Guo, Z.; Feng, D.; Thiyagarajan, V.; Yao, H. Combat Biofouling with Microscopic Ridge-like Surface Morphology: A Bioinspired Study. J. R. Soc. Interface. 2018, 15 (140), 20170823. https://doi.org/10.1098/rsif.2017.0823.

[56]. Fu, J.; Zhang, H.; Guo, Z.; Feng, D.; Thiyagarajan, V.; Yao, H. Combat Biofouling with Microscopic Ridge-like Surface Morphology: A Bioinspired Study. J. R. Soc. Interface. 2018, 15 (140), 20170823. https://doi.org/10.1098/rsif.2017.0823.

[57]. Feng, D.; Wang, W.; Wang, X.; Qiu, Y.; Ke, C. Low Barnacle Fouling on Leaves of the Mangrove Plant Sonneratia Apetala and Possible Anti-Barnacle Defense Strategies. Mar. Ecol. Prog. Ser. 2016, 544, 169–182. https://doi.org/10.3354/meps11585.

[58]. Black, M. Darwin and Seeds. Seed Sci. Res. 2009, 19 (4), 193–199. https://doi.org/10.1017/S0960258509990171.

[59]. Bers, A. V.; Wahl, M. The Influence of Natural Surface Microtopographies on Fouling. Biofouling 2004, 20 (1), 43–51. https://doi.org/10.1080/08927010410001655533.

[60]. Adey, W. H. The Genus Clathromorphum (Corallinaceae) in the Gulf of Maine. Hydrobiologia 1965, 26 (3–4), 539–573. https://doi.org/10.1007/BF00045545.

[61]. Suneson, S. The Culture of Bisporangial Plants of Dermatolithon Litorale (Suneson) Hamel et Lemoine (Rhodophyta, Corallinaceae). British Phycological Journal 1982, 17 (1), 107–116. https://doi.org/10.1080/00071618200650121.

[62]. Shao, C.-L.; Wang, C.-Y.; Wei, M.-Y.; Gu, Y.-C.; She, Z.-G.; Qian, P.-Y.; Lin, Y.-C. Aspergilones A and B, Two Benzylazaphilones with an Unprecedented Carbon Skeleton from the Gorgonian-Derived Fungus Aspergillus Sp. Bioorganic & Medicinal Chemistry Letters 2011, 21 (2), 690–693. https://doi.org/10.1016/j.bmcl.2010.12.005.

[63]. Shao, C.-L.; Xu, R.-F.; Wang, C.-Y.; Qian, P.-Y.; Wang, K.-L.; Wei, M.-Y. Potent Antifouling Marine Dihydroquinolin-2(1H)-One-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis Sp. Mar Biotechnol 2015, 17 (4), 408–415. https://doi.org/10.1007/s10126-015-9628-x.

[64]. Zhou, Y.-M.; Shao, C.-L.; Wang, C.-Y.; Huang, H.; Xu, Y.; Qian, P.-Y. Chemical Constituents of the Gorgonian Dichotella Fragilis (Ridleg) from the South China Sea. Natural Product Communications 2011, 6 (9), 1934578X1100600. https://doi.org/10.1177/1934578X1100600907.

[65]. Liu, Q.-A.; Shao, C.-L.; Gu, Y.-C.; Blum, M.; Gan, L.-S.; Wang, K.-L.; Chen, M.; Wang, C.-Y. Antifouling and Fungicidal Resorcylic Acid Lactones from the Sea Anemone-Derived Fungus Cochliobolus Lunatus. J. Agric. Food Chem. 2014, 62 (14), 3183–3191. https://doi.org/10.1021/jf500248z.

[66]. Wang, C.-Y.; Wang, K.-L.; Qian, P.-Y.; Xu, Y.; Chen, M.; Zheng, J.-J.; Liu, M.; Shao, C.-L.; Wang, C.-Y. Antifouling Phenyl Ethers and Other Compounds from the Invertebrates and Their Symbiotic Fungi Collected from the South China Sea. AMB Expr 2016, 6 (1), 102. https://doi.org/10.1186/s13568-016-0272-2.

[67]. Cao, Z.; Jiang, S. Super-Hydrophilic Zwitterionic Poly(Carboxybetaine) and Amphiphilic Non-Ionic Poly(Ethylene Glycol) for Stealth Nanoparticles. Nano Today 2012, 7 (5), 404–413. https://doi.org/10.1016/j.nantod.2012.08.001.

[68]. Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M. A Survey of Structure−Property Relationships of Surfaces That Resist the Adsorption of Protein. Langmuir 2001, 17 (18), 5605–5620. https://doi.org/10.1021/la010384m.

[69]. Crouzet, C.; Decker, C.; Marchal, J. Caractérisation de réactions primaires de dégradation oxydante au cours de l’autoxydation des poly(oxyéthylène)s à 25°C: Étude en solution aqueuse avec amorçage par radiolyse du solvant, 8. Étude cinétique en fonction du ph compris entre 1 et 13. Makromol. Chem. 1976, 177 (1), 145–157. https://doi.org/10.1002/macp.1976.021770112.

[70]. Zheng, L.; Sundaram, H. S.; Wei, Z.; Li, C.; Yuan, Z. Applications of Zwitterionic Polymers. Reactive and Functional Polymers 2017, 118, 51–61. https://doi.org/10.1016/j.reactfunctpolym.2017.07.006.

[71]. Bragadeeswaran, S.; Priyadharshini, S.; Prabhu, K.; Rani, S. R. S. Antimicrobial and Hemolytic Activity of Fish Epidermal Mucus Cynoglossus Arel and Arius Caelatus. Asian Pacific Journal of Tropical Medicine 2011, 4 (4), 305–309. https://doi.org/10.1016/S1995-7645(11)60091-6.

[72]. Kuppulakshmi, C.; Prakash, M.; Gunasekaran, G.; Manimegalai, G.; Sarojini, S. Antibacterial Properties of Fish Mucus from Channa Punctatus and Cirrhinus Mrigala.

[73]. Segrest, J. P.; De Loof, H.; Dohlman, J. G.; Brouillette, C. G.; Anantharamaiah, G. M. Amphipathic Helix Motif: Classes and Properties. Proteins 1990, 8 (2), 103–117. https://doi.org/10.1002/prot.340080202.

[74]. Su, Y. Isolation and Identification of Pelteobagrin, a Novel Antimicrobial Peptide from the Skin Mucus of Yellow Catfish (Pelteobagrus Fulvidraco). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2011, 158 (2), 149–154. https://doi.org/10.1016/j.cbpb.2010.11.002.

[75]. Saint, N.; Cadiou, H.; Bessin, Y.; Molle, G. Antibacterial Peptide Pleurocidin Forms Ion Channels in Planar Lipid Bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes 2002, 1564 (2), 359–364. https://doi.org/10.1016/S0005-2736(02)00470-4.

[76]. Park, I. Y.; Park, C. B.; Kim, M. S.; Kim, S. C. Parasin I, an Antimicrobial Peptide Derived from Histone H2A in the Catfish, Parasilurus Asotus. FEBS Letters 1998, 437 (3), 258–262. https://doi.org/10.1016/S0014-5793(98)01238-1.

[77]. Bowie, J. H.; Separovic, F.; Tyler, M. J. Host-Defense Peptides of Australian Anurans. Part 2. Structure, Activity, Mechanism of Action, and Evolutionary Significance. Peptides 2012, 37 (1), 174–188. https://doi.org/10.1016/j.peptides.2012.06.017.

[78]. Ladram, A. Antimicrobial Peptides from Frog Skin Biodiversity and Therapeutic Promises. Front Biosci 2016, 21 (7), 1341–1371. https://doi.org/10.2741/4461.

[79]. Strahilevitz, J.; Mor, A.; Nicolas, P.; Shai, Y. Spectrum of Antimicrobial Activity and Assembly of Dermaseptin-b and Its Precursor Form in Phospholipid Membranes. Biochemistry 1994, 33 (36), 10951–10960. https://doi.org/10.1021/bi00202a014.

[80]. Nicolas, P. Multifunctional Host Defense Peptides: Intracellular‐targeting Antimicrobial Peptides. The FEBS Journal 2009, 276 (22), 6483–6496. https://doi.org/10.1111/j.1742-4658.2009.07359.x.

[81]. Wong, T.-S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature 2011, 477 (7365), 443–447. https://doi.org/10.1038/nature10447.

[82]. Bohn, H. F.; Federle, W. Insect Aquaplaning: Nepenthes Pitcher Plants Capture Prey with the Peristome, a Fully Wettable Water-Lubricated Anisotropic Surface. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (39), 14138–14143. https://doi.org/10.1073/pnas.0405885101.

[83]. Gaume, L.; Perret, P.; Gorb, E.; Gorb, S.; Labat, J.-J.; Rowe, N. How Do Plant Waxes Cause Flies to Slide? Experimental Tests of Wax-Based Trapping Mechanisms in Three Pitfall Carnivorous Plants. Arthropod Structure & Development 2004, 33 (1), 103–111. https://doi.org/10.1016/j.asd.2003.11.005.

[84]. Ren, L.-Q.; Tong, J.; Li, J.-Q.; Chen, B.-C. SW—Soil and Water. Journal of Agricultural Engineering Research 2001, 79 (3), 239–263. https://doi.org/10.1006/jaer.2001.0722.

[85]. Gao, F.; Baraka-Kamali, E.; Shirtcliffe, N.; Terrell-Nield, C. A Preliminary Study of the Surface Properties of Earthworms and Their Relations to Non-Stain Behaviour. J Bionic Eng 2010, 7 (1), 13–18. https://doi.org/10.1016/S1672-6529(09)60193-1.

[86]. Zhao, H.; Sun, Q.; Deng, X.; Cui, J. Earthworm‐Inspired Rough Polymer Coatings with Self‐Replenishing Lubrication for Adaptive Friction‐Reduction and Antifouling Surfaces. Advanced Materials 2018, 30 (29), 1802141. https://doi.org/10.1002/adma.201802141.

[87]. Liang, X.; Dong, R.; Ho, J. C. Self‐Assembly of Colloidal Spheres toward Fabrication of Hierarchical and Periodic Nanostructures for Technological Applications. Adv Materials Technologies 2019, 4 (3), 1800541. https://doi.org/10.1002/admt.201800541.

[88]. Kang, K.-S. Fabrication of Large Area Nanostructures with Surface Modified Silica Spheres. Superlattices and Microstructures 2014, 67, 17–24. https://doi.org/10.1016/j.spmi.2013.12.022.

[89]. MEMS Materials and Processes Handbook; Ghodssi, R., Lin, P., Eds.; MEMS Reference Shelf; Springer US: Boston, MA, 2011; Vol. 1. https://doi.org/10.1007/978-0-387-47318-5.

[90]. Menon, R.; Patel, A.; Gil, D.; Smith, H. I. Maskless Lithography. Materials Today 2005, 8 (2), 26–33. https://doi.org/10.1016/S1369-7021(05)00699-1.

[91]. Hastings, J. T.; Zhang, F.; Smith, H. I. Nanometer-Level Stitching in Raster-Scanning Electron-Beam Lithography Using Spatial-Phase Locking. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2003, 21 (6), 2650–2656. https://doi.org/10.1116/1.1622944.

[92]. Walsh, M. E.; Zhang, F.; Menon, R.; Smith, H. I. Maskless Photolithography. In Nanolithography; Elsevier, 2014; pp 179–193. https://doi.org/10.1533/9780857098757.179.

[93]. Walsh, M. E.; Zhang, F.; Menon, R.; Smith, H. I. Maskless Photolithography. In Nanolithography; Elsevier, 2014; pp 179–193. https://doi.org/10.1533/9780857098757.179.

[94]. Walsh, M. E.; Zhang, F.; Menon, R.; Smith, H. I. Maskless Photolithography. In Nanolithography; Elsevier, 2014; pp 179–193. https://doi.org/10.1533/9780857098757.179.

[95]. Gill, U.; Sutherland, T.; Himbert, S.; Zhu, Y.; Rheinstädter, M. C.; Cranston, E. D.; Moran-Mirabal, J. M. Beyond Buckling: Humidity-Independent Measurement of the Mechanical Properties of Green Nanobiocomposite Films. Nanoscale 2017, 9 (23), 7781–7790. https://doi.org/10.1039/C7NR00251C.

[96]. Zeng, S.; Li, R.; Freire, S. G.; Garbellotto, V. M. M.; Huang, E. Y.; Smith, A. T.; Hu, C.; Tait, W. R. T.; Bian, Z.; Zheng, G.; Zhang, D.; Sun, L. Moisture‐Responsive Wrinkling Surfaces with Tunable Dynamics. Advanced Materials 2017, 29 (24), 1700828. https://doi.org/10.1002/adma.201700828.

[97]. Izawa, H.; Miyazaki, Y.; Yonemura, T.; Ito, N.; Okamoto, Y.; Ifuku, S.; Morimoto, M.; Saimoto, H. Polysaccharide-Based Wrinkled Surfaces Induced by Polyion Complex Skin Layers upon Drying. Polym J 2019, 51 (7), 675–683. https://doi.org/10.1038/s41428-019-0174-7.

[98]. Ridgway, S. H.; Carder, D. A. Features of Dolphin Skin with Potential Hydrodynamic Importance. IEEE Eng. Med. Biol. Mag. 1993, 12 (3), 83–88. https://doi.org/10.1109/51.232347.

[99]. Pellicano, P.; Riley, J. Residual and Inter-Cycle Ice for Lower-Speed Aircraft with Pneumatic Boots. In 45th AIAA Aerospace Sciences Meeting and Exhibit; American Institute of Aeronautics and Astronautics: Reno, Nevada, 2007. https://doi.org/10.2514/6.2007-1090.

[100]. Piscitelli, F.; Chiariello, A.; Dabkowski, D.; Corraro, G.; Marra, F.; Di Palma, L. Superhydrophobic Coatings as Anti-Icing Systems for Small Aircraft. Aerospace 2020, 7 (1), 2. https://doi.org/10.3390/aerospace7010002.

[101]. Sánchez-Lozano, I.; Hernández-Guerrero, C. J.; Muñoz-Ochoa, M.; Hellio, C. Biomimetic Approaches for the Development of New Antifouling Solutions: Study of Incorporation of Macroalgae and Sponge Extracts for the Development of New Environmentally-Friendly Coatings. IJMS 2019, 20 (19), 4863. https://doi.org/10.3390/ijms20194863.

[102]. Jiang, B.; Zeng, Q.; Hou, Y.; Liu, J.; Xu, J.; Li, H.; Du, C.; Shi, S.; Ma, F. Quorum Quenching Bacteria Bioaugmented GO/PPy Modified Membrane in EMBR for Membrane Antifouling. Science of The Total Environment 2020, 718, 137412. https://doi.org/10.1016/j.scitotenv.2020.137412.

[103]. Dobretsov, S.; Teplitski, M.; Bayer, M.; Gunasekera, S.; Proksch, P.; Paul, V. J. Inhibition of Marine Biofouling by Bacterial Quorum Sensing Inhibitors. Biofouling 2011, 27 (8), 893–905. https://doi.org/10.1080/08927014.2011.609616.

[104]. Chapman, J.; Hellio, C.; Sullivan, T.; Brown, R.; Russell, S.; Kiterringham, E.; Le Nor, L.; Regan, F. Bioinspired Synthetic Macroalgae: Examples from Nature for Antifouling Applications. International Biodeterioration & Biodegradation 2014, 86, 6–13. https://doi.org/10.1016/j.ibiod.2013.03.036.

[105]. Chapman, J.; Hellio, C.; Sullivan, T.; Brown, R.; Russell, S.; Kiterringham, E.; Le Nor, L.; Regan, F. Bioinspired Synthetic Macroalgae: Examples from Nature for Antifouling Applications. International Biodeterioration & Biodegradation 2014, 86, 6–13. https://doi.org/10.1016/j.ibiod.2013.03.036.

[106]. Ma, C.; Zhang, W.; Zhang, G.; Qian, P.-Y. Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant. ACS Sustainable Chem. Eng. 2017, 5 (7), 6304–6309. https://doi.org/10.1021/acssuschemeng.7b01385.

[107]. Li, L.; Hong, H.; Cao, J.; Yang, Y. Progress in Marine Antifouling Coatings: Current Status and Prospects. Coatings 2023, 13 (11), 1893. https://doi.org/10.3390/coatings13111893.

[108]. Scardino, A. J.; Guenther, J.; De Nys, R. Attachment Point Theory Revisited: The Fouling Response to a Microtextured Matrix. Biofouling 2008, 24 (1), 45–53. https://doi.org/10.1080/08927010701784391.

[109]. Li, S.; Feng, K.; Li, J.; Li, Y.; Li, Z.; Yu, L.; Xu, X. Marine Antifouling Strategies: Emerging Opportunities for Seawater Resource Utilization. Chemical Engineering Journal 2024, 486, 149859. https://doi.org/10.1016/j.cej.2024.149859.

[110]. Li, S.; Feng, K.; Li, J.; Li, Y.; Li, Z.; Yu, L.; Xu, X. Marine Antifouling Strategies: Emerging Opportunities for Seawater Resource Utilization. Chemical Engineering Journal 2024, 486, 149859. https://doi.org/10.1016/j.cej.2024.149859.

[111]. Bixler, G. D.; Bhushan, B. Biofouling: Lessons from Nature. Phil. Trans. R. Soc. A. 2012, 370 (1967), 2381–2417. https://doi.org/10.1098/rsta.2011.0502.

[112]. Scardino, A. J.; De Nys, R. Mini Review: Biomimetic Models and Bioinspired Surfaces for Fouling Control. Biofouling 2011, 27 (1), 73–86. https://doi.org/10.1080/08927014.2010.536837.

[113]. Czyzyk, S.; Dotan, A.; Dodiuk, H.; Kenig, S. Processing Effects on the Kinetics Morphology and Properties of Hybrid Sol-Gel Superhydrophobic Coatings. Progress in Organic Coatings 2020, 140, 105501. https://doi.org/10.1016/j.porgcoat.2019.105501.

[114]. Beigbeder, A.; Degee, P.; Conlan, S. L.; Mutton, R. J.; Clare, A. S.; Pettitt, M. E.; Callow, M. E.; Callow, J. A.; Dubois, P. Preparation and Characterisation of Silicone-Based Coatings Filled with Carbon Nanotubes and Natural Sepiolite and Their Application as Marine Fouling-Release Coatings. Biofouling 2008, 24 (4), 291–302. https://doi.org/10.1080/08927010802162885.

[115]. Azimi Dijvejin, Z.; Khatir, B.; Golovin, K. Suspended Kirigami Surfaces for Multifoulant Adhesion Reduction. ACS Appl. Mater. Interfaces 2022, 14 (4), 6221–6229. https://doi.org/10.1021/acsami.1c22344.


Cite this article

Wang,K.;Fan,Z.;Xie,H. (2025). Bio-Inspired Surfaces for Fouling Resistance, Their Applications, Challenges, and Opportunities. Applied and Computational Engineering,168,1-25.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering

ISBN:978-1-80590-205-8(Print) / 978-1-80590-206-5(Online)
Editor:Harun CELIK
Conference website: https://2025.confmcee.org/
Conference date: 17 January 2025
Series: Applied and Computational Engineering
Volume number: Vol.168
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Schultz, M. P.; Bendick, J. A.; Holm, E. R.; Hertel, W. M. Economic Impact of Biofouling on a Naval Surface Ship. Biofouling 2011, 27 (1), 87–98. https://doi.org/10.1080/08927014.2010.542809.

[2]. Selim, M. S.; Shenashen, M. A.; El-Safty, S. A.; Higazy, S. A.; Selim, M. M.; Isago, H.; Elmarakbi, A. Recent Progress in Marine Foul-Release Polymeric Nanocomposite Coatings. Progress in Materials Science 2017, 87, 1–32. https://doi.org/10.1016/j.pmatsci.2017.02.001.

[3]. Aiyejina, A.; Chakrabarti, D. P.; Pilgrim, A.; Sastry, M. K. S. Wax Formation in Oil Pipelines: A Critical Review. International Journal of Multiphase Flow 2011, 37 (7), 671–694. https://doi.org/10.1016/j.ijmultiphaseflow.2011.02.007.

[4]. Johanson, W. G. Nosocomial Respiratory Infections with Gram-Negative Bacilli: The Significance of Colonization of the Respiratory Tract. Ann Intern Med 1972, 77 (5), 701. https://doi.org/10.7326/0003-4819-77-5-701.

[5]. Percival, S. L.; Suleman, L.; Vuotto, C.; Donelli, G. Healthcare-Associated Infections, Medical Devices and Biofilms: Risk, Tolerance and Control. Journal of Medical Microbiology 2015, 64 (4), 323–334. https://doi.org/10.1099/jmm.0.000032.

[6]. Callow, M. E.; Callow, J. A. Marine Biofouling: A Sticky Problem. Marine biofouling.

[7]. Leontaritis, K. J.; Ali Mansoori, G. Asphaltene Deposition: A Survey of Field Experiences and Research Approaches. Journal of Petroleum Science and Engineering 1988, 1 (3), 229–239. https://doi.org/10.1016/0920-4105(88)90013-7.

[8]. Flint, S.; Bremer, P.; Brooks, J.; Palmer, J.; Sadiq, F. A.; Seale, B.; Teh, K. H.; Wu, S.; Md Zain, S. N. Bacterial Fouling in Dairy Processing. International Dairy Journal 2020, 101, 104593. https://doi.org/10.1016/j.idairyj.2019.104593.

[9]. Brzozowska, A. M.; Maassen, S.; Goh Zhi Rong, R.; Benke, P. I.; Lim, C.-S.; Marzinelli, E. M.; Jańczewski, D.; Teo, S. L.-M.; Vancso, G. J. Effect of Variations in Micropatterns and Surface Modulus on Marine Fouling of Engineering Polymers. ACS Appl. Mater. Interfaces 2017, 9 (20), 17508–17516. https://doi.org/10.1021/acsami.6b14262.

[10]. Walker, G. C.; Sun, Y.; Guo, S.; Finlay, J. A.; Callow, M. E.; Callow, J. A. Surface Mechanical Properties of the Spore Adhesive of the Green Alga Ulva. The Journal of Adhesion 2005, 81 (10–11), 1101–1118. https://doi.org/10.1080/00218460500310846.

[11]. Callow, J. A.; Callow, M. E. Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings. Nat Commun 2011, 2 (1), 244. https://doi.org/10.1038/ncomms1251.

[12]. Guenther, J.; De Nys, R. Surface Microtopographies of Tropical Sea Stars: Lack of an Efficient Physical Defence Mechanism against Fouling. Biofouling 2007, 23 (6), 419–429. https://doi.org/10.1080/08927010701570071.

[13]. Guenther, J.; De Nys, R. Surface Microtopographies of Tropical Sea Stars: Lack of an Efficient Physical Defence Mechanism against Fouling. Biofouling 2007, 23 (6), 419–429. https://doi.org/10.1080/08927010701570071.

[14]. Holm, E. R.; Kavanagh, C. J.; Meyer, A. E.; Wiebe, D.; Nedved, B. T.; Wendt, D.; Smith, C. M.; Hadfield, M. G.; Swain, G.; Wood, C. D.; Truby, K.; Stein, J.; Montemarano, J. Interspecific Variation in Patterns of Adhesion of Marine Fouling to Silicone Surfaces. Biofouling 2006, 22 (4), 233–243. https://doi.org/10.1080/08927010600826129.

[15]. Holm, E. R.; Kavanagh, C. J.; Meyer, A. E.; Wiebe, D.; Nedved, B. T.; Wendt, D.; Smith, C. M.; Hadfield, M. G.; Swain, G.; Wood, C. D.; Truby, K.; Stein, J.; Montemarano, J. Interspecific Variation in Patterns of Adhesion of Marine Fouling to Silicone Surfaces. Biofouling 2006, 22 (4), 233–243. https://doi.org/10.1080/08927010600826129.

[16]. Vellwock, A. E.; Yao, H. Biomimetic and Bioinspired Surface Topographies as a Green Strategy for Combating Biofouling: A Review. Bioinspir. Biomim. 2021, 16 (4), 041003. https://doi.org/10.1088/1748-3190/ac060f.

[17]. Rodríguez-López, P.; Barrenengoa, A. E.; Pascual-Sáez, S.; Cabo, M. L. Efficacy of Synthetic Furanones on Listeria Monocytogenes Biofilm Formation. Foods 2019, 8 (12), 647. https://doi.org/10.3390/foods8120647.

[18]. Xu, Y.; He, H.; Schulz, S.; Liu, X.; Fusetani, N.; Xiong, H.; Xiao, X.; Qian, P.-Y. Potent Antifouling Compounds Produced by Marine Streptomyces. Bioresource Technology 2010, 101 (4), 1331–1336. https://doi.org/10.1016/j.biortech.2009.09.046.

[19]. Jin, H.; Tian, L.; Bing, W.; Zhao, J.; Ren, L. Bioinspired Marine Antifouling Coatings: Status, Prospects, and Future. Progress in Materials Science 2022, 124, 100889. https://doi.org/10.1016/j.pmatsci.2021.100889.

[20]. Ai, X.; Mei, L.; Ma, C.; Zhang, G. Degradable Hyperbranched Polymer with Fouling Resistance for Antifouling Coatings. Progress in Organic Coatings 2021, 153, 106141. https://doi.org/10.1016/j.porgcoat.2021.106141.

[21]. Thomason, J. C.; Letissier, M. D. A.; Thomason, P. O.; Field, S. N. Optimising Settlement Tiles: The Effects of Surface Texture and Energy, Orientation and Deployment Duration upon the Fouling Community. Biofouling 2002, 18 (4), 293–304. https://doi.org/10.1080/0892701021000034409.

[22]. Lappin‐Scott, H. M.; Costerton, J. W. Bacterial Biofilms and Surface Fouling. Biofouling 1989, 1 (4), 323–342. https://doi.org/10.1080/08927018909378120.

[23]. Rafsanjani, A.; Zhang, Y.; Liu, B.; Rubinstein, S. M.; Bertoldi, K. Kirigami Skins Make a Simple Soft Actuator Crawl. Sci. Robot. 2018, 3 (15), eaar7555. https://doi.org/10.1126/scirobotics.aar7555.

[24]. Rafsanjani, A.; Zhang, Y.; Liu, B.; Rubinstein, S. M.; Bertoldi, K. Kirigami Skins Make a Simple Soft Actuator Crawl. Sci. Robot. 2018, 3 (15), eaar7555. https://doi.org/10.1126/scirobotics.aar7555.

[25]. Young1805.

[26]. Kwok, D. Y.; Neumann, A. W. Contact Angle Measurement and Contact Angle Interpretation. Advances in Colloid and Interface Science 1999, 81 (3), 167–249. https://doi.org/10.1016/S0001-8686(98)00087-6.

[27]. Doshi, B.; Sillanpää, M.; Kalliola, S. A Review of Bio-Based Materials for Oil Spill Treatment. Water Research 2018, 135, 262–277. https://doi.org/10.1016/j.watres.2018.02.034.

[28]. Drelich, J.; Chibowski, E.; Meng, D. D.; Terpilowski, K. Hydrophilic and Superhydrophilic Surfaces and Materials. Soft Matter 2011, 7 (21), 9804. https://doi.org/10.1039/c1sm05849e.

[29]. Lee, S.-M.; Kwon, T. H. Effects of Intrinsic Hydrophobicity on Wettability of Polymer Replicas of a Superhydrophobic Lotus Leaf. J. Micromech. Microeng. 2007, 17 (4), 687–692. https://doi.org/10.1088/0960-1317/17/4/003.

[30]. Koch, K.; Barthlott, W. Superhydrophobic and Superhydrophilic Plant Surfaces: An Inspiration for Biomimetic Materials. Phil. Trans. R. Soc. A. 2009, 367 (1893), 1487–1509. https://doi.org/10.1098/rsta.2009.0022.

[31]. Wenzel, R. N. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Ind. Eng. Chem. 1936, 28 (8), 988–994. https://doi.org/10.1021/ie50320a024.

[32]. Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546. https://doi.org/10.1039/tf9444000546.

[33]. Manukyan, G.; Oh, J. M.; Van Den Ende, D.; Lammertink, R. G. H.; Mugele, F. Electrical Switching of Wetting States on Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions. Phys. Rev. Lett. 2011, 106 (1), 014501. https://doi.org/10.1103/PhysRevLett.106.014501.

[34]. Koishi, T.; Yasuoka, K.; Fujikawa, S.; Ebisuzaki, T.; Zeng, X. C. Coexistence and Transition between Cassie and Wenzel State on Pillared Hydrophobic Surface. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (21), 8435–8440. https://doi.org/10.1073/pnas.0902027106.

[35]. Murakami, D.; Jinnai, H.; Takahara, A. Wetting Transition from the Cassie–Baxter State to the Wenzel State on Textured Polymer Surfaces. Langmuir 2014, 30 (8), 2061–2067. https://doi.org/10.1021/la4049067.

[36]. Jeevahan, J.; Chandrasekaran, M.; Britto Joseph, G.; Durairaj, R. B.; Mageshwaran, G. Superhydrophobic Surfaces: A Review on Fundamentals, Applications, and Challenges. J Coat Technol Res 2018, 15 (2), 231–250. https://doi.org/10.1007/s11998-017-0011-x.

[37]. Zhang, L.; Zhao, N.; Xu, J. Fabrication and Application of Superhydrophilic Surfaces: A Review. Journal of Adhesion Science and Technology 2014, 28 (8–9), 769–790. https://doi.org/10.1080/01694243.2012.697714.

[38]. Zhang, L.; Zhao, N.; Xu, J. Fabrication and Application of Superhydrophilic Surfaces: A Review. Journal of Adhesion Science and Technology 2014, 28 (8–9), 769–790. https://doi.org/10.1080/01694243.2012.697714.

[39]. Jin, H.; Tian, L.; Bing, W.; Zhao, J.; Ren, L. Toward the Application of Graphene for Combating Marine Biofouling. Advanced Sustainable Systems 2021, 5 (1), 2000076. https://doi.org/10.1002/adsu.202000076.

[40]. Jin, H.; Tian, L.; Bing, W.; Zhao, J.; Ren, L. Toward the Application of Graphene for Combating Marine Biofouling. Advanced Sustainable Systems 2021, 5 (1), 2000076. https://doi.org/10.1002/adsu.202000076.

[41]. Parra, C.; Dorta, F.; Jimenez, E.; Henríquez, R.; Ramírez, C.; Rojas, R.; Villalobos, P. A Nanomolecular Approach to Decrease Adhesion of Biofouling-Producing Bacteria to Graphene-Coated Material. J Nanobiotechnol 2015, 13 (1), 82. https://doi.org/10.1186/s12951-015-0137-x.

[42]. Brady, R. F.; Singer, I. L. Mechanical Factors Favoring Release from Fouling Release Coatings. Biofouling 2000, 15 (1–3), 73–81. https://doi.org/10.1080/08927010009386299.

[43]. Brady, R. F. A Fracture Mechanical Analysis of Fouling Release from Nontoxic Antifouling Coatings. Progress in Organic Coatings 2001, 43 (1–3), 188–192. https://doi.org/10.1016/S0300-9440(01)00180-1.

[44]. Vladkova, T. Surface Modification Approach to Control Biofouling. In Marine and Industrial Biofouling; Flemming, H.-C., Murthy, P. S., Venkatesan, R., Cooksey, K., Eds.; Springer Series on Biofilms; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009; Vol. 4, pp 135–163. https://doi.org/10.1007/978-3-540-69796-1_7.

[45]. Kendall, K. The Adhesion and Surface Energy of Elastic Solids. J. Phys. D: Appl. Phys. 1971, 4 (8), 1186–1195. https://doi.org/10.1088/0022-3727/4/8/320.

[46]. Zhang, J. W.; Lin, C. G.; Wang, L.; Zheng, J. Y.; Xu, F. L. The Influence of Water Contact Angle on the Colonization of Diatoms (Navicula Sp and Pinnularia Sp) and Ulva Spores (Pertusa). KEM 2013, 562–565, 1229–1233. https://doi.org/10.4028/www.scientific.net/KEM.562-565.1229.

[47]. Masaki, T.; Fujita, D.; Hagen, N. T. The Surface Ultrastructure and Epithallíum Shedding of Crustose Coralline Algae in an `Isoyake’ Area of Southwestern Hokkaido, Japan.

[48]. Bandyopadhyay, P. R.; Hellum, A. M. Modeling How Shark and Dolphin Skin Patterns Control Transitional Wall-Turbulence Vorticity Patterns Using Spatiotemporal Phase Reset Mechanisms. Sci Rep 2014, 4 (1), 6650. https://doi.org/10.1038/srep06650.

[49]. Omae, I. General Aspects of Natural Products Antifoulants in the Environment. In Antifouling Paint Biocides; Konstantinou, I. K., Ed.; The Handbook of Environmental Chemistry; Springer Berlin Heidelberg, 2006; Vol. 5O, pp 227–262. https://doi.org/10.1007/698_5_057.

[50]. Schlenoff, J. B. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 2014, 30 (32), 9625–9636. https://doi.org/10.1021/la500057j.

[51]. Elavarasi, K.; Ranjini, S.; Rajagopal, T.; Rameshkumar, G.; Ponmanickam, P. Bactericidal Proteins of Skin Mucus and Skin Extracts from Fresh Water Fishes, Clarias Batrachus and Tilapia Mossambicus. The Thai Journal of Pharmaceutical Sciences 2013, 37 (4), 194–200. https://doi.org/10.56808/3027-7922.2078.

[52]. Zhao, H.; Sun, Q.; Deng, X.; Cui, J. Earthworm‐Inspired Rough Polymer Coatings with Self‐Replenishing Lubrication for Adaptive Friction‐Reduction and Antifouling Surfaces. Advanced Materials 2018, 30 (29), 1802141. https://doi.org/10.1002/adma.201802141.

[53]. Zhao, H.; Sun, Q.; Deng, X.; Cui, J. Earthworm‐Inspired Rough Polymer Coatings with Self‐Replenishing Lubrication for Adaptive Friction‐Reduction and Antifouling Surfaces. Advanced Materials 2018, 30 (29), 1802141. https://doi.org/10.1002/adma.201802141.

[54]. Clasen, A.; Kesel, A. B. Microstructural Surface Properties of Drifting Seeds—A Model for Non-Toxic Antifouling Solutions. Biomimetics 2019, 4 (2), 37. https://doi.org/10.3390/biomimetics4020037.

[55]. Fu, J.; Zhang, H.; Guo, Z.; Feng, D.; Thiyagarajan, V.; Yao, H. Combat Biofouling with Microscopic Ridge-like Surface Morphology: A Bioinspired Study. J. R. Soc. Interface. 2018, 15 (140), 20170823. https://doi.org/10.1098/rsif.2017.0823.

[56]. Fu, J.; Zhang, H.; Guo, Z.; Feng, D.; Thiyagarajan, V.; Yao, H. Combat Biofouling with Microscopic Ridge-like Surface Morphology: A Bioinspired Study. J. R. Soc. Interface. 2018, 15 (140), 20170823. https://doi.org/10.1098/rsif.2017.0823.

[57]. Feng, D.; Wang, W.; Wang, X.; Qiu, Y.; Ke, C. Low Barnacle Fouling on Leaves of the Mangrove Plant Sonneratia Apetala and Possible Anti-Barnacle Defense Strategies. Mar. Ecol. Prog. Ser. 2016, 544, 169–182. https://doi.org/10.3354/meps11585.

[58]. Black, M. Darwin and Seeds. Seed Sci. Res. 2009, 19 (4), 193–199. https://doi.org/10.1017/S0960258509990171.

[59]. Bers, A. V.; Wahl, M. The Influence of Natural Surface Microtopographies on Fouling. Biofouling 2004, 20 (1), 43–51. https://doi.org/10.1080/08927010410001655533.

[60]. Adey, W. H. The Genus Clathromorphum (Corallinaceae) in the Gulf of Maine. Hydrobiologia 1965, 26 (3–4), 539–573. https://doi.org/10.1007/BF00045545.

[61]. Suneson, S. The Culture of Bisporangial Plants of Dermatolithon Litorale (Suneson) Hamel et Lemoine (Rhodophyta, Corallinaceae). British Phycological Journal 1982, 17 (1), 107–116. https://doi.org/10.1080/00071618200650121.

[62]. Shao, C.-L.; Wang, C.-Y.; Wei, M.-Y.; Gu, Y.-C.; She, Z.-G.; Qian, P.-Y.; Lin, Y.-C. Aspergilones A and B, Two Benzylazaphilones with an Unprecedented Carbon Skeleton from the Gorgonian-Derived Fungus Aspergillus Sp. Bioorganic & Medicinal Chemistry Letters 2011, 21 (2), 690–693. https://doi.org/10.1016/j.bmcl.2010.12.005.

[63]. Shao, C.-L.; Xu, R.-F.; Wang, C.-Y.; Qian, P.-Y.; Wang, K.-L.; Wei, M.-Y. Potent Antifouling Marine Dihydroquinolin-2(1H)-One-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis Sp. Mar Biotechnol 2015, 17 (4), 408–415. https://doi.org/10.1007/s10126-015-9628-x.

[64]. Zhou, Y.-M.; Shao, C.-L.; Wang, C.-Y.; Huang, H.; Xu, Y.; Qian, P.-Y. Chemical Constituents of the Gorgonian Dichotella Fragilis (Ridleg) from the South China Sea. Natural Product Communications 2011, 6 (9), 1934578X1100600. https://doi.org/10.1177/1934578X1100600907.

[65]. Liu, Q.-A.; Shao, C.-L.; Gu, Y.-C.; Blum, M.; Gan, L.-S.; Wang, K.-L.; Chen, M.; Wang, C.-Y. Antifouling and Fungicidal Resorcylic Acid Lactones from the Sea Anemone-Derived Fungus Cochliobolus Lunatus. J. Agric. Food Chem. 2014, 62 (14), 3183–3191. https://doi.org/10.1021/jf500248z.

[66]. Wang, C.-Y.; Wang, K.-L.; Qian, P.-Y.; Xu, Y.; Chen, M.; Zheng, J.-J.; Liu, M.; Shao, C.-L.; Wang, C.-Y. Antifouling Phenyl Ethers and Other Compounds from the Invertebrates and Their Symbiotic Fungi Collected from the South China Sea. AMB Expr 2016, 6 (1), 102. https://doi.org/10.1186/s13568-016-0272-2.

[67]. Cao, Z.; Jiang, S. Super-Hydrophilic Zwitterionic Poly(Carboxybetaine) and Amphiphilic Non-Ionic Poly(Ethylene Glycol) for Stealth Nanoparticles. Nano Today 2012, 7 (5), 404–413. https://doi.org/10.1016/j.nantod.2012.08.001.

[68]. Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M. A Survey of Structure−Property Relationships of Surfaces That Resist the Adsorption of Protein. Langmuir 2001, 17 (18), 5605–5620. https://doi.org/10.1021/la010384m.

[69]. Crouzet, C.; Decker, C.; Marchal, J. Caractérisation de réactions primaires de dégradation oxydante au cours de l’autoxydation des poly(oxyéthylène)s à 25°C: Étude en solution aqueuse avec amorçage par radiolyse du solvant, 8. Étude cinétique en fonction du ph compris entre 1 et 13. Makromol. Chem. 1976, 177 (1), 145–157. https://doi.org/10.1002/macp.1976.021770112.

[70]. Zheng, L.; Sundaram, H. S.; Wei, Z.; Li, C.; Yuan, Z. Applications of Zwitterionic Polymers. Reactive and Functional Polymers 2017, 118, 51–61. https://doi.org/10.1016/j.reactfunctpolym.2017.07.006.

[71]. Bragadeeswaran, S.; Priyadharshini, S.; Prabhu, K.; Rani, S. R. S. Antimicrobial and Hemolytic Activity of Fish Epidermal Mucus Cynoglossus Arel and Arius Caelatus. Asian Pacific Journal of Tropical Medicine 2011, 4 (4), 305–309. https://doi.org/10.1016/S1995-7645(11)60091-6.

[72]. Kuppulakshmi, C.; Prakash, M.; Gunasekaran, G.; Manimegalai, G.; Sarojini, S. Antibacterial Properties of Fish Mucus from Channa Punctatus and Cirrhinus Mrigala.

[73]. Segrest, J. P.; De Loof, H.; Dohlman, J. G.; Brouillette, C. G.; Anantharamaiah, G. M. Amphipathic Helix Motif: Classes and Properties. Proteins 1990, 8 (2), 103–117. https://doi.org/10.1002/prot.340080202.

[74]. Su, Y. Isolation and Identification of Pelteobagrin, a Novel Antimicrobial Peptide from the Skin Mucus of Yellow Catfish (Pelteobagrus Fulvidraco). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2011, 158 (2), 149–154. https://doi.org/10.1016/j.cbpb.2010.11.002.

[75]. Saint, N.; Cadiou, H.; Bessin, Y.; Molle, G. Antibacterial Peptide Pleurocidin Forms Ion Channels in Planar Lipid Bilayers. Biochimica et Biophysica Acta (BBA) - Biomembranes 2002, 1564 (2), 359–364. https://doi.org/10.1016/S0005-2736(02)00470-4.

[76]. Park, I. Y.; Park, C. B.; Kim, M. S.; Kim, S. C. Parasin I, an Antimicrobial Peptide Derived from Histone H2A in the Catfish, Parasilurus Asotus. FEBS Letters 1998, 437 (3), 258–262. https://doi.org/10.1016/S0014-5793(98)01238-1.

[77]. Bowie, J. H.; Separovic, F.; Tyler, M. J. Host-Defense Peptides of Australian Anurans. Part 2. Structure, Activity, Mechanism of Action, and Evolutionary Significance. Peptides 2012, 37 (1), 174–188. https://doi.org/10.1016/j.peptides.2012.06.017.

[78]. Ladram, A. Antimicrobial Peptides from Frog Skin Biodiversity and Therapeutic Promises. Front Biosci 2016, 21 (7), 1341–1371. https://doi.org/10.2741/4461.

[79]. Strahilevitz, J.; Mor, A.; Nicolas, P.; Shai, Y. Spectrum of Antimicrobial Activity and Assembly of Dermaseptin-b and Its Precursor Form in Phospholipid Membranes. Biochemistry 1994, 33 (36), 10951–10960. https://doi.org/10.1021/bi00202a014.

[80]. Nicolas, P. Multifunctional Host Defense Peptides: Intracellular‐targeting Antimicrobial Peptides. The FEBS Journal 2009, 276 (22), 6483–6496. https://doi.org/10.1111/j.1742-4658.2009.07359.x.

[81]. Wong, T.-S.; Kang, S. H.; Tang, S. K. Y.; Smythe, E. J.; Hatton, B. D.; Grinthal, A.; Aizenberg, J. Bioinspired Self-Repairing Slippery Surfaces with Pressure-Stable Omniphobicity. Nature 2011, 477 (7365), 443–447. https://doi.org/10.1038/nature10447.

[82]. Bohn, H. F.; Federle, W. Insect Aquaplaning: Nepenthes Pitcher Plants Capture Prey with the Peristome, a Fully Wettable Water-Lubricated Anisotropic Surface. Proc. Natl. Acad. Sci. U.S.A. 2004, 101 (39), 14138–14143. https://doi.org/10.1073/pnas.0405885101.

[83]. Gaume, L.; Perret, P.; Gorb, E.; Gorb, S.; Labat, J.-J.; Rowe, N. How Do Plant Waxes Cause Flies to Slide? Experimental Tests of Wax-Based Trapping Mechanisms in Three Pitfall Carnivorous Plants. Arthropod Structure & Development 2004, 33 (1), 103–111. https://doi.org/10.1016/j.asd.2003.11.005.

[84]. Ren, L.-Q.; Tong, J.; Li, J.-Q.; Chen, B.-C. SW—Soil and Water. Journal of Agricultural Engineering Research 2001, 79 (3), 239–263. https://doi.org/10.1006/jaer.2001.0722.

[85]. Gao, F.; Baraka-Kamali, E.; Shirtcliffe, N.; Terrell-Nield, C. A Preliminary Study of the Surface Properties of Earthworms and Their Relations to Non-Stain Behaviour. J Bionic Eng 2010, 7 (1), 13–18. https://doi.org/10.1016/S1672-6529(09)60193-1.

[86]. Zhao, H.; Sun, Q.; Deng, X.; Cui, J. Earthworm‐Inspired Rough Polymer Coatings with Self‐Replenishing Lubrication for Adaptive Friction‐Reduction and Antifouling Surfaces. Advanced Materials 2018, 30 (29), 1802141. https://doi.org/10.1002/adma.201802141.

[87]. Liang, X.; Dong, R.; Ho, J. C. Self‐Assembly of Colloidal Spheres toward Fabrication of Hierarchical and Periodic Nanostructures for Technological Applications. Adv Materials Technologies 2019, 4 (3), 1800541. https://doi.org/10.1002/admt.201800541.

[88]. Kang, K.-S. Fabrication of Large Area Nanostructures with Surface Modified Silica Spheres. Superlattices and Microstructures 2014, 67, 17–24. https://doi.org/10.1016/j.spmi.2013.12.022.

[89]. MEMS Materials and Processes Handbook; Ghodssi, R., Lin, P., Eds.; MEMS Reference Shelf; Springer US: Boston, MA, 2011; Vol. 1. https://doi.org/10.1007/978-0-387-47318-5.

[90]. Menon, R.; Patel, A.; Gil, D.; Smith, H. I. Maskless Lithography. Materials Today 2005, 8 (2), 26–33. https://doi.org/10.1016/S1369-7021(05)00699-1.

[91]. Hastings, J. T.; Zhang, F.; Smith, H. I. Nanometer-Level Stitching in Raster-Scanning Electron-Beam Lithography Using Spatial-Phase Locking. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2003, 21 (6), 2650–2656. https://doi.org/10.1116/1.1622944.

[92]. Walsh, M. E.; Zhang, F.; Menon, R.; Smith, H. I. Maskless Photolithography. In Nanolithography; Elsevier, 2014; pp 179–193. https://doi.org/10.1533/9780857098757.179.

[93]. Walsh, M. E.; Zhang, F.; Menon, R.; Smith, H. I. Maskless Photolithography. In Nanolithography; Elsevier, 2014; pp 179–193. https://doi.org/10.1533/9780857098757.179.

[94]. Walsh, M. E.; Zhang, F.; Menon, R.; Smith, H. I. Maskless Photolithography. In Nanolithography; Elsevier, 2014; pp 179–193. https://doi.org/10.1533/9780857098757.179.

[95]. Gill, U.; Sutherland, T.; Himbert, S.; Zhu, Y.; Rheinstädter, M. C.; Cranston, E. D.; Moran-Mirabal, J. M. Beyond Buckling: Humidity-Independent Measurement of the Mechanical Properties of Green Nanobiocomposite Films. Nanoscale 2017, 9 (23), 7781–7790. https://doi.org/10.1039/C7NR00251C.

[96]. Zeng, S.; Li, R.; Freire, S. G.; Garbellotto, V. M. M.; Huang, E. Y.; Smith, A. T.; Hu, C.; Tait, W. R. T.; Bian, Z.; Zheng, G.; Zhang, D.; Sun, L. Moisture‐Responsive Wrinkling Surfaces with Tunable Dynamics. Advanced Materials 2017, 29 (24), 1700828. https://doi.org/10.1002/adma.201700828.

[97]. Izawa, H.; Miyazaki, Y.; Yonemura, T.; Ito, N.; Okamoto, Y.; Ifuku, S.; Morimoto, M.; Saimoto, H. Polysaccharide-Based Wrinkled Surfaces Induced by Polyion Complex Skin Layers upon Drying. Polym J 2019, 51 (7), 675–683. https://doi.org/10.1038/s41428-019-0174-7.

[98]. Ridgway, S. H.; Carder, D. A. Features of Dolphin Skin with Potential Hydrodynamic Importance. IEEE Eng. Med. Biol. Mag. 1993, 12 (3), 83–88. https://doi.org/10.1109/51.232347.

[99]. Pellicano, P.; Riley, J. Residual and Inter-Cycle Ice for Lower-Speed Aircraft with Pneumatic Boots. In 45th AIAA Aerospace Sciences Meeting and Exhibit; American Institute of Aeronautics and Astronautics: Reno, Nevada, 2007. https://doi.org/10.2514/6.2007-1090.

[100]. Piscitelli, F.; Chiariello, A.; Dabkowski, D.; Corraro, G.; Marra, F.; Di Palma, L. Superhydrophobic Coatings as Anti-Icing Systems for Small Aircraft. Aerospace 2020, 7 (1), 2. https://doi.org/10.3390/aerospace7010002.

[101]. Sánchez-Lozano, I.; Hernández-Guerrero, C. J.; Muñoz-Ochoa, M.; Hellio, C. Biomimetic Approaches for the Development of New Antifouling Solutions: Study of Incorporation of Macroalgae and Sponge Extracts for the Development of New Environmentally-Friendly Coatings. IJMS 2019, 20 (19), 4863. https://doi.org/10.3390/ijms20194863.

[102]. Jiang, B.; Zeng, Q.; Hou, Y.; Liu, J.; Xu, J.; Li, H.; Du, C.; Shi, S.; Ma, F. Quorum Quenching Bacteria Bioaugmented GO/PPy Modified Membrane in EMBR for Membrane Antifouling. Science of The Total Environment 2020, 718, 137412. https://doi.org/10.1016/j.scitotenv.2020.137412.

[103]. Dobretsov, S.; Teplitski, M.; Bayer, M.; Gunasekera, S.; Proksch, P.; Paul, V. J. Inhibition of Marine Biofouling by Bacterial Quorum Sensing Inhibitors. Biofouling 2011, 27 (8), 893–905. https://doi.org/10.1080/08927014.2011.609616.

[104]. Chapman, J.; Hellio, C.; Sullivan, T.; Brown, R.; Russell, S.; Kiterringham, E.; Le Nor, L.; Regan, F. Bioinspired Synthetic Macroalgae: Examples from Nature for Antifouling Applications. International Biodeterioration & Biodegradation 2014, 86, 6–13. https://doi.org/10.1016/j.ibiod.2013.03.036.

[105]. Chapman, J.; Hellio, C.; Sullivan, T.; Brown, R.; Russell, S.; Kiterringham, E.; Le Nor, L.; Regan, F. Bioinspired Synthetic Macroalgae: Examples from Nature for Antifouling Applications. International Biodeterioration & Biodegradation 2014, 86, 6–13. https://doi.org/10.1016/j.ibiod.2013.03.036.

[106]. Ma, C.; Zhang, W.; Zhang, G.; Qian, P.-Y. Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant. ACS Sustainable Chem. Eng. 2017, 5 (7), 6304–6309. https://doi.org/10.1021/acssuschemeng.7b01385.

[107]. Li, L.; Hong, H.; Cao, J.; Yang, Y. Progress in Marine Antifouling Coatings: Current Status and Prospects. Coatings 2023, 13 (11), 1893. https://doi.org/10.3390/coatings13111893.

[108]. Scardino, A. J.; Guenther, J.; De Nys, R. Attachment Point Theory Revisited: The Fouling Response to a Microtextured Matrix. Biofouling 2008, 24 (1), 45–53. https://doi.org/10.1080/08927010701784391.

[109]. Li, S.; Feng, K.; Li, J.; Li, Y.; Li, Z.; Yu, L.; Xu, X. Marine Antifouling Strategies: Emerging Opportunities for Seawater Resource Utilization. Chemical Engineering Journal 2024, 486, 149859. https://doi.org/10.1016/j.cej.2024.149859.

[110]. Li, S.; Feng, K.; Li, J.; Li, Y.; Li, Z.; Yu, L.; Xu, X. Marine Antifouling Strategies: Emerging Opportunities for Seawater Resource Utilization. Chemical Engineering Journal 2024, 486, 149859. https://doi.org/10.1016/j.cej.2024.149859.

[111]. Bixler, G. D.; Bhushan, B. Biofouling: Lessons from Nature. Phil. Trans. R. Soc. A. 2012, 370 (1967), 2381–2417. https://doi.org/10.1098/rsta.2011.0502.

[112]. Scardino, A. J.; De Nys, R. Mini Review: Biomimetic Models and Bioinspired Surfaces for Fouling Control. Biofouling 2011, 27 (1), 73–86. https://doi.org/10.1080/08927014.2010.536837.

[113]. Czyzyk, S.; Dotan, A.; Dodiuk, H.; Kenig, S. Processing Effects on the Kinetics Morphology and Properties of Hybrid Sol-Gel Superhydrophobic Coatings. Progress in Organic Coatings 2020, 140, 105501. https://doi.org/10.1016/j.porgcoat.2019.105501.

[114]. Beigbeder, A.; Degee, P.; Conlan, S. L.; Mutton, R. J.; Clare, A. S.; Pettitt, M. E.; Callow, M. E.; Callow, J. A.; Dubois, P. Preparation and Characterisation of Silicone-Based Coatings Filled with Carbon Nanotubes and Natural Sepiolite and Their Application as Marine Fouling-Release Coatings. Biofouling 2008, 24 (4), 291–302. https://doi.org/10.1080/08927010802162885.

[115]. Azimi Dijvejin, Z.; Khatir, B.; Golovin, K. Suspended Kirigami Surfaces for Multifoulant Adhesion Reduction. ACS Appl. Mater. Interfaces 2022, 14 (4), 6221–6229. https://doi.org/10.1021/acsami.1c22344.