Research Article
Open access
Published on 26 December 2023
Download pdf
Wen,C.;Wu,X.;Shen,C.;Huang,Z.;Cai,P. (2023). Bitcoin price prediction based on sentiment analysis and LSTM. Applied and Computational Engineering,29,148-159.
Export citation

Bitcoin price prediction based on sentiment analysis and LSTM

Chenfeiyu Wen *,1, Xiangting Wu 2, Chuyue Shen 3, Zifei Huang 4, Peiqi Cai 5
  • 1 Central South University
  • 2 The Experimental High School Attached to Beijing Normal University
  • 3 Hangzhou Dianzi University
  • 4 The Ohio State University
  • 5 Zhejiang University

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2755-2721/29/20230743

Abstract

As cryptocurrencies become widely accepted due to technical improvements, reliable approaches to capture their future price movements of them become critical. This study mainly combines weighted sentiment analysis results from social media-related comments and financial news headlines with a stacked LSTM model to predict second-day Bitcoin price evolution. This study also compared our results and the results produced by MLP, RF, and SVM after feeding the sentiment analysis results.

Keywords

Bitcoin, LSTM, sentiment analysis, price prediction

[1]. Ladislav Kristoufek. “BitCoin meets Google Trends and Wikipedia: Quantifying the relationship between phenomena of the Internet era”. en. In: Scientific Reports 3.1 (Dec. 2013), p. 3415. ISSN: 2045-2322. DOI: 10.1038/srep03415. URL: http://www.nature.com/articles/ srep03415 (visited on 03/12/2022).

[2]. Paul C. Tetlock. “Giving Content to Investor Sentiment: The Role of Media in the Stock Market”. en. In: The Journal of Finance 62.3 (June 2007), pp. 1139–1168. ISSN: 00221082. DOI: 10.1111/j.1540-6261.2007.01232.x. URL: https://onlinelibrary.wiley.com/doi/10.1111/j.1540-6261.2007.01232.x (visited on 03/12/2022).

[3]. Karalevicius, V., Degrande, N. and De Weerdt, J. (2018), "Using sentiment analysis to predict interday Bitcoin price movements", Journal of Risk Finance, Vol. 19 No. 1, pp. 56-75. https://doi.org/10.1108/JRF-06-2017-0092

[4]. Adebiyi A. Ariyo, Adewumi O. Adewumi, and Charles K. Ayo. “Stock Price Prediction Using the ARIMA Model”. In: 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation. Cambridge, United Kingdom: IEEE, Mar. 2014, pp. 106–112. ISBN: 978-1-4799-4922-9 978-1-4799- 4923-6. DOI:10.1109/UKSim.2014.67. URL: http://ieeexplore.ieee.org/document/7046047/ (visited on 03/12/2022).

[5]. Bhawna Panwar et al. “Stock Market Prediction Using Linear Regression and SVM”. In: 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). Greater Noida, India: IEEE, Mar. 2021, pp. 629–631. ISBN: 978-1- 72817-741-0. DOI: 10.1109/ICACITE51222.2021. 9404733. URL:https://ieeexplore.ieee.org/document/9404733/ (visited on 03/12/2022).

[6]. Sean McNally, Jason Roche, and Simon Caton. “Predicting the Price of Bitcoin Using Machine Learning”. In: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP). Cambridge: IEEE, Mar. 2018, pp. 339–343. ISBN: 978-1-5386-4975-6. DOI: 10.1109/PDP2018.2018.00060. URL: https://ieeexplore.ieee.org/document/ 8374483/ (visited on 03/12/2022).

[7]. Vladimir Naumovich Vapnik. The nature of statistical learning theory. 2nd ed. Statistics for engineering and information science. New York: Springer, 2000. ISBN: 978-0-387-98780-4.

[8]. Yuling Lin, Haixiang Guo, and Jinglu Hu. “An SVM- based approach for stock market trend prediction”. In: The 2013 International Joint Conference on Neural Networks (IJCNN). Dallas, TX, USA: IEEE, Aug. 2013, pp. 1–7. ISBN: 978-1-4673-6129-3 978-1-4673-6128- 6. DOI: 10.1109/IJCNN.2013.6706743. URL: http://ieeexplore.ieee.org/document/6706743/ (visited on 03/12/2022).

[9]. Ping-Feng Pai and Chih-Sheng Lin. “A hybrid ARIMA and support vector machines model in stock price forecasting”. en. In: Omega 33.6 (Dec. 2005), pp. 497–505. ISSN: 03050483. DOI: 10.1016/j.omega.2004.07.024.URL: https://linkinghub.elsevier.com/retrieve/pii/S0305048304001082 (visited on 03/12/2022).

[10]. Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. en. In: Nature 521.7553 (May 2015), pp. 436–444. ISSN: 0028-0836, 1476-4687. DOI: 10.1038/nature14539. URL: http://www.nature.com/articles/nature14539 (visited on 03/12/2022).

[11]. Aditi Mittal et al. “Short-Term Bitcoin Price Fluctuation Prediction Using Social Media and Web Search Data”. In: 2019 Twelfth International Conference on Contemporary Computing (IC3). Noida, India: IEEE, Aug. 2019, pp. 1–6. ISBN: 978-1-72813-591-5. DOI: 10.1109/IC3.2019.8844899. URL: https://ieeexplore.ieee.org/document/8844899/ (visited on 03/12/2022).

[12]. David M. Q. Nelson, Adriano C. M. Pereira, and Renato A. de Oliveira. “Stock market’s price movement prediction with LSTM neural networks”. In: 2017 International Joint Conference on Neural Networks (IJCNN). Anchorage, AK, USA: IEEE, May 2017, pp. 1419– 1426. ISBN: 978-1-5090-6182-2. DOI: 10.1109/IJCNN.2017.7966019. URL: http://sieeexplore.ieee.org/document/7966019/ (visited on 03/12/2022).

[13]. Samuel Olusegun Ojo et al. “Stock Market Behaviour Prediction using Stacked LSTM Networks”. In: 2019 International Multidisciplinary Information Technology and Engineering Conference (IMITEC). Vanderbijlpark, South Africa: IEEE, Nov. 2019, pp. 1–5. ISBN: 978- 1-72810-040-1. DOI: 10.1109/IMITEC45504.2019.9015840. URL: https://ieeexplore.ieee.org/document/9015840/ (visited on 03/12/2022).

[14]. Walaa Medhat, Ahmed Hassan, and Hoda Korashy. “Sentiment analysis algorithms and applications: A survey”. en. In: Ain Shams Engineering Journal 5.4 (Dec. 2014), pp. 1093–1113. ISSN: 20904479. DOI: 10.1016/j.asej.2014.04.011. URL: https://linkinghub.elsevier.com/retrieve/pii/S2090447914000550 (visited on 03/12/2022).

[15]. Apoorv Agarwal et al. “Sentiment Analysis of Twitter Data”. en. In: (), p. 9.

[16]. Johan Bollen, Huina Mao, and Xiaojun Zeng. “Twitter mood predicts the stock market”. en. In: Journal of Computational Science 2.1 (Mar. 2011), pp. 1–8. ISSN: 18777503. DOI: 10.1016/j.jocs.2010.12.007. URL: https://linkinghub.elsevier.com/retrieve/pii/S187775031100007X (visited on 03/12/2022).

[17]. Shaunak Joshi and Deepali Deshpande. “Twitter Sentiment Analysis System”. In: (2018). Publisher: arXiv Version Number: 1. DOI: 10.48550/ARXIV.1807.07752. URL: https://arxiv.org/abs/1807.07752 (visited on 03/12/2022).

[18]. Dr. G. S. N. Murthy et al. “Text based Sentiment Analysis using LSTM”. en. In: International Journal of Engineering Research and V9.05 (May 2020), IJERTV9IS050290. ISSN: 2278-0181. DOI: 10.17577/ IJERTV9IS050290. URL: https://www.ijert.org/text-based-sentiment-analysis-using-lstm (visited on 03/12/2022).

[19]. Faliang Huang et al. “Attention-Emotion-Enhanced Convolutional LSTM for Sentiment Analysis”. In: IEEE Transactions on Neural Networks and Learning Systems (2021), pp. 1–14. ISSN: 2162-237X, 2162-2388. DOI: 10.1109/TNNLS.2021.3056664. URL: https://ieeexplore.ieee.org/document/9358000/ (visited on 03/12/2022).

[20]. Sachin Tiwari. “A Survey on LSTM-based Stock Market Prediction”. en. In: (), p. 8.

[21]. Connor Lamon, Eric Nielsen, and Eric Redondo. “CRYPTOCURRENCY PRICE PREDICTION USING NEWS AND SOCIAL MEDIA SENTIMENT”. en. In: (), p. 1.

[22]. Keyan Liu, Jianan Zhou, and Dayong Dong. “Improving stock price prediction using the long short-term memory model combined with online social networks”. en. In: Journal of Behavioral and Experimental Finance 30 (June 2021), p. 100507. ISSN: 22146350. DOI: 10.1016/j.jbef.2021.100507. URL: https://linkinghub.elsevier.com/retrieve/pii/S2214635021000514 (visited on 03/12/2022).

[23]. Zhigang Jin, Yang Yang, and Yuhong Liu. “Stock clos- ing price prediction based on sentiment analysis and LSTM”. en. In: Neural Computing and Applications 32.13 (July 2020), pp. 9713–9729. ISSN: 0941-0643, 1433-3058. DOI: 10.1007/s00521-019-04504-2. URL: http://link.springer.com/10.1007/s00521-019-04504-2 (visited on 03/12/2022).

[24]. Marah-Lisanne Thormann et al. “Stock Price Predic- tions with LSTM Neural Networks and Twitter Sentiment”. In: Statistics, Optimization & Information Computing 9.2 (May 2021), pp. 268–287. ISSN: 2310-5070, 2311-004X. DOI: 10.19139/soic-2310-5070-1202. URL: http://www.iapress.org/index.php/soic/article/view/1202 (visited on 03/12/2022).

[25]. S M Raju and Ali Mohammad Tarif. “Real-Time Prediction of BITCOIN Price using Machine Learning Techniques and Public Sentiment Analysis”. In: (2020). Publisher: arXiv Version Number: 1. DOI: 10.48550/ARXIV.2006.14473. URL: https://arxiv.org/abs/2006.14473 (visited on 03/12/2022).

[26]. Edward Loper and Steven Bird. “NLTK: The Natural Language Toolkit”. In: arXiv:cs/0205028 (May 2002). arXiv: cs/0205028. URL: http://arxiv.org/abs/cs/0205028 (visited on 04/08/2022).

[27]. Clayton J. Hutto and Eric Gilbert. “VADER: A Parsi- monious Rule-Based Model for Sentiment Analysis of Social Media Text”. In: ICWSM. 2014.

[28]. Anselm Strauss and Juliet Corbin. “Basics of qualitative research techniques”. In: (1998).

Cite this article

Wen,C.;Wu,X.;Shen,C.;Huang,Z.;Cai,P. (2023). Bitcoin price prediction based on sentiment analysis and LSTM. Applied and Computational Engineering,29,148-159.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 5th International Conference on Computing and Data Science

Conference website: https://2023.confcds.org/
ISBN:978-1-83558-259-6(Print) / 978-1-83558-260-2(Online)
Conference date: 14 July 2023
Editor:Alan Wang, Marwan Omar, Roman Bauer
Series: Applied and Computational Engineering
Volume number: Vol.29
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).