
Privacy challenges and policy implications of in-home monitoring systems
- 1 University of Illinois
* Author to whom correspondence should be addressed.
Abstract
In the evolving landscape of the Internet of Things (IoT) home monitoring systems, this paper addresses the pressing privacy challenges and policy implications, highlighting the dual threats of sophisticated cyber-attacks and cloud-based vulnerabil- ities. We advocate a harmonized approach integrating technical solutions with regulatory frames to counter these issues. Our research systematically evaluates existing security mechanisms and introduces an innovative framework that blends advanced encryption techniques, robust data management practices, and comprehensive policy solutions to enhance IoT security. Central to this framework is a collaborative engagement model that brings together the efforts of legislative bodies, service provision entities, and the end-user community, ensuring a dynamic user- centric security posture against emerging threats. This study con- tributes a scalable, user-centric security model that significantly advances the discourse on IoT privacy and security, addressing the unique demands of IoT environments.
Keywords
HMS, privacy protection, privacy policy, data encryption, regulatory compliance
[1]. HaddadPajouh, H. et al. (2021). A survey on internet of things security: Requirements, challenges, and solutions. Internet of Things, 14, 100129. doi:10.1016/j.iot.2019.100129.
[2]. Kolias, C. et al. (2017). DDoS in the IOT: Mirai and other botnets. Computer, 50(7), 80-84. doi:10.1109/mc.2017.201.
[3]. Khan, Z.A. and Namin, A.S. (2022). A survey of DDOS attack detection techniques for IOT systems using blockchain technology. Electronics, 11(23), 3892. doi:10.3390/electronics11233892.
[4]. Saha, V. et al. (2023). Analysis of blockchain-based techniques for the mitigation of ddos attacks in IOT devices. 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT) [Preprint]. doi:10.1109/icccnt56998.2023.10307642.
[5]. Abinaya, M., Prabakeran, S. and Kalpana, M. (2023). Comparative evaluation on various machine learning strategies based on identification of ddos attacks in IOT environment. Heterogenous Computational Intelligence in Internet of Things, 112-130. doi:10.1201/9781003363606-8.
[6]. Kaur, K. and Ayoade, J. (2023). Analysis of ddos attacks on IOT architecture. 2023 10th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) [Preprint]. doi:10.1109/eecsi59885.2023.10295766.
[7]. Jabar, T. and Mahinderjit Singh, M. (2022). Exploration of mobile device behavior for mitigating Advanced persistent threats (apt): A systematic literature review and conceptual framework. Sensors, 22(13), 4662. doi:10.3390/s22134662.
[8]. Shen, Y. et al. (2022). Prior knowledge based advanced persistent threats detection for IOT in a realistic benchmark. GLOBECOM 2022 - IEEE Global Communications Conference [Preprint]. doi:10.1109/globecom48099.2022.10000811.
[9]. Haque, S. et al. (2023a). Identification of important features at different IOT layers for dynamic attack detection. 2023 IEEE 9th International Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International Conference on High Performance and Smart Computing (HPSC) and IEEE International Conference on Intelligent Data and Security (IDS) [Preprint]. doi:10.1109/bigdatasecurity-hpsc-ids58521.2023.00025.
[10]. Chen, J. and Zhu, Q. (2017). Security as a service for cloud-enabled internet of controlled things under Advanced persistent threats: A contract design approach. IEEE Transactions on Information Forensics and Security, 12(11), 2736-2750. doi:10.1109/tifs.2017.2718489.
[11]. Prabhu, A.S., Nayak, A.G. and Kamath, H.S. (2023). Detection of ddos attacks in IOT devices. 2023 International Conference on Communication, Circuits, and Systems (IC3S) [Preprint]. doi:10.1109/ic3s57698.2023.10169385.
[12]. Veeraiah, V. et al. (2022). Securing online web application for IOT Management. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE) [Preprint]. doi:10.1109/icacite53722.2022.9823733.
[13]. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A. (2018). GAZELLE: A Low Latency Framework for Secure Neural Network Inference. Proceedings of the 27th USENIX Security Symposium, 1651-1669. Retrieved from https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar.
[14]. Mishra, P. et al. (2020). Delphi. Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice [Preprint]. doi:10.1145/3411501.3419418.
[15]. Coppola, G., Varde, A.S. and Shang, J. (2023). Enhancing cloud security posture for ubiquitous data access with a cybersecurity framework based management tool. 2023 IEEE 14th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON) [Preprint]. doi:10.1109/uemcon59035.2023.10316003.
[16]. Mahmood, S. (2019). The anti-data-mining (ADM) framework-better privacy on online social networks and beyond. 2019 IEEE International Conference on Big Data (Big Data) [Preprint]. doi:10.1109/bigdata47090.2019.9006050.
[17]. Yuan, G., Xie, F. and Tan, H. (2022). Construction of Economic Security Early Warning System based on cloud computing and Data Mining. Computational Intelligence and Neuroscience, 2022, 1-12. doi:10.1155/2022/2080840.
[18]. Han, J. et al. (2021). Quantify co-residency risks in the cloud through Deep learning. IEEE Transactions on Dependable and Secure Computing, 18(4), 1568-1579. doi:10.1109/tdsc.2020.3032073.
[19]. Rajalakshmi, B. (2023). Exploring cryptographic paradigms for secure cloud computing. 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) [Preprint]. doi:10.1109/icaiss58487.2023.10250744.
[20]. Sun, J. et al. (2018). A searchable personal health records framework with fine-grained access control in cloud-fog computing. PLOS ONE, 13(11). doi:10.1371/journal.pone.0207543.
[21]. Thenappan, S., Valan Rajkumar, M. and Manoharan, P.S. (2020). Predicting diabetes mellitus using modified support vector machine with cloud security. IETE Journal of Research, 68(6), 3940-3950. doi:10.1080/03772063.2020.1782781.
[22]. HaddadPajouh, H., et al. (2021). A Survey on Internet of Things Security: Requirements, Challenges, and Solutions. Internet of Things, 14, 100129. doi:10.1016/j.iot.2019.100129.
[23]. Kolias, C., et al. (2017). DDoS in the IoT: Mirai and Other Botnets. IEEE Computer, 50(7), 80-84. doi:10.1109/mc.2017.201.
[24]. Smith, J. (2020). The Risks of Insecure Data Transmission in IoT Systems. Journal of Cybersecurity, 8(2), 45-52.
[25]. Brown, A., Davis, M. (2019). The Weaknesses of DES in Modern IoT Security. International Journal of Information Security, 12(3), 201-215.
[26]. Chen, L., Wang, X. (2021). Enhancing IoT Security with TLS: A Case Study. IEEE Transactions on Industrial Informatics, 17(4), 2456-2465.
[27]. Patel, R., Gupta, S. (2022). AES Implementation in IoT Devices: Challenges and Solutions. Security and Communication Networks, 15(1), 1-14.
[28]. Roman, R., Zhou, J., Lopez, J. (2018). On the Features and Challenges of Security and Privacy in Distributed Internet of Things. Computer Networks, 129, 54-71. doi:10.1016/j.comnet.2018.03.013.
[29]. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M. (2015). Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications. IEEE Communications Surveys & Tutorials, 17(4), 2347-2376. doi:10.1109/COMST.2015.2444095.
[30]. Zargar, S. T., Joshi, J. (2013). A Survey of Defense Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks. IEEE Communications Surveys & Tutorials, 15(4), 2046-2061. doi:10.1109/SURV.2013.080213.00051.
[31]. Baccelli, F., Batty, M., Haenni, R. (2016). Device-to-Device Communication: A Survey of Recent Developments and Research Challenges. IEEE Communications Surveys & Tutorials, 18(3), 1818-1855. doi:10.1109/COMST.2016.2556763.
[32]. Zhang, X., Wang, X. (2020). Blockchain for IoT Security and Privacy: The State of the Art and Challenges. IEEE Internet of Things Journal, 7(10), 7637-7650. doi:10.1109/JIOT.2020.3004708.
[33]. Lauter, K., Naehrig, M. P., Vaikuntanathan, V. (2011). Homomorphic Encryption for Private Search on Untrusted Clouds. Proceedings of the 2011 IEEE Symposium on Security and Privacy (SP ’11), 305-318. doi:10.1109/SP.2011.13.
[34]. Li, M., Li, H., Chen, X. (2018). A Blockchain-Based Privacy-Preserving Data Sharing Scheme for IoT. IEEE Access, 6, 37191-37199. doi:10.1109/ACCESS.2018.2839575.
[35]. Tung, B., Beck, M. (2018). Blockchain and the Internet of Things: A Perfect Match? IEEE Internet Computing, 22(2), 16-19. doi:10.1109/MIC.2018.8395349.
[36]. Xu, L. D., He, W., Li, S. (2019). Blockchain-Based Carbon Trading in the IoT Era. IEEE Transactions on Industrial Informatics, 15(2), 1229-1238. doi:10.1109/TII.2018.2879678.
[37]. Conti, M., Sood, S. K. (2018). Blockchain for the Internet of Things: Opportunities, Challenges, and Solutions. IEEE Internet of Things Journal, 5(2), 1184-1196. doi:10.1109/JIOT.2017.2781227.
[38]. Li, S., Han, K., Liu, X. (2020). A Survey on the Edge Computing for the Internet of Things. IEEE Access, 8, 79437-79458. doi:10.1109/ACCESS.2020.2989818.
[39]. Bos, J. W., Lauter, K., Naehrig, M. P., Vets, I. (2015). Private Predictions on Encrypted Medical Data. Proceedings of the 2015 IEEE Symposium on Security and Privacy (SP ’15), 259-274. doi:10.1109/SP.2015.48.
[40]. Miller, V. S. (1986). Use of Elliptic Curves in Cryptography. Advances in Cryptology - CRYPTO ’85 Proceedings, Lecture Notes in Computer Science, vol 218. Springer, Berlin, Heidelberg. doi:10.1007/3-540-39799-2_11.
[41]. Hankerson, D., Menezes, A. J., Vanstone, S. A. (Eds.). (2004). Guide to Elliptic Curve Cryptography. Springer.
[42]. Scarani, V., Gisin, N. (2009). Quantum Key Distribution: Protocols, Implementations, and Applications. Quantum Information Science and Its Contributions to Information Theory, Lecture Notes in Computer Science, vol 5229. Springer, Berlin, Heidelberg.
[43]. Gentry, C. (2009). Fully Homomorphic Encryption Using Ideal Lattices. Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing (STOC ’09), 169-178.
[44]. Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved from https://bitcoin.org/bitcoin.pdf.
[45]. Cranor, L. F., Reisman, D. (2014). The Venn Diagram of Privacy. Proceedings of the 2014 IEEE Symposium on Security and Privacy (SP ’14), 520-532. doi:10.1109/SP.2014.49.
[46]. Rescorla, E. (2015). The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246. Retrieved from https://tools.ietf.org/html/rfc5246.
Cite this article
Meng,X. (2024). Privacy challenges and policy implications of in-home monitoring systems. Advances in Engineering Innovation,9,24-33.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Journal:Advances in Engineering Innovation
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).