A review of research on Two-Dimensional semiconductor materials

Research Article
Open access

A review of research on Two-Dimensional semiconductor materials

Yan Li 1*
  • 1 School of Science, Tibet University    
  • *corresponding author liyantbu@qq.com
Published on 10 June 2025 | https://doi.org/10.54254/2977-3903/2025.23985
AEI Vol.16 Issue 6
ISSN (Print): 2977-3911
ISSN (Online): 2977-3903

Abstract

Since their emergence, Two-Dimensional (2D) materials have garnered significant attention due to their unique crystal structures and electronic properties, which offer distinct advantages for various applications. As a result, the study of 2D materials has become a crucial area within materials science. This paper introduces four representative 2D materials: graphene, hexagonal boron nitride, two-dimensional transition metal dichalcogenides, and phosphorene. It also briefly discusses their applications in electronic and optoelectronic devices, batteries, supercapacitors, and photocatalytic reactions, analyzing the advantages they hold over traditional materials.

Keywords:

Two-Dimensional materials, Two-Dimensional semiconductor materials, crystal structure, electronic properties

Li,Y. (2025). A review of research on Two-Dimensional semiconductor materials. Advances in Engineering Innovation,16(6),43-49.
Export citation

References

[1]. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

[2]. Mannix, A. J., Zhou, Z., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., ... & Hersam, M. C. (2018). Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 13(6), 444–450.

[3]. Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X. H., & Zhang, Y. (2014). Black phosphorus field-effect transistors. Nature Nanotechnology, 9(5), 372–377.

[4]. Bafekry, A., Yagmurcukardes, M., Akgenc, B., Ghergherehchi, M., & Nguyen, C. V. (2020). Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron. Journal of Physics D: Applied Physics, 53(35). 10.1088/1361-6463/ab876c

[5]. Caldwell, J. D., Aharonovich, I., Cassabois, G., Edgar, J. H., Gil, B., & Basov, D. N. (2019). Photonics with hexagonal boron nitride. Nature Reviews Materials, 4(8), 552–567.

[6]. Zhang, H. (2015). Ultrathin two-dimensional nanomaterials. ACS Nano, 9(10), 9451-9469. DOI: 10.1021/acsnano.5b05040

[7]. Lee, J., Bang, J., & Kang, J. (2022). Nonequilibrium charge-density-wave melting in 1T-TaS₂ triggered by electronic excitation: A real-time time-dependent density functional theory study. The Journal of Physical Chemistry Letters, 13(25), 5711–5718.

[8]. Huang, H., Zha, J., Li, S., Wang, Y., & Zhang, C. (2022). Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications. Chinese Chemical Letters, 33(1), 163–176.

[9]. Zhao, Y., Zhu, L., Zhou, B., & Jiang, S. (2023). Chemical vapor deposition of uniform bilayer PtS₂ flakes for electrocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 25(16), 11311-11315. doi: 10.1039/d3cp01164j

[10]. Hu, Y., Liu, X. Y., Shen, Z. H., Luo, Z. F., Chen, Z. G., & Fan, X. L. (2020). High Curie temperature and carrier mobility of novel Fe, Co and Ni carbide MXenes. Nanoscale, 12(21), 11627–11637.

[11]. Gibertini, M., Koperski, M., Morpurgo, A. F., & Novoselov, K. S. (2019). Magnetic 2D materials and heterostructures. Nature Nanotechnology, 14(5), 408–419.

[12]. Zhao, S., Wan, W., Ge, Y., & Liu, Y. (2021). Prediction of chalcogen-doped VCl₃ monolayers as 2D ferromagnetic semiconductors with enhanced optical absorption. Annalen der Physik, 533(6). https://doi.org/10.1002/andp.202100064

[13]. Castro Neto, A. H., Guinea, F., Peres, N. M. R., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162.

[14]. Das Sarma, S., Adam, S., Hwang, E. H., & Rossi, E. (2011). Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 83(2), 407–470.

[15]. Bhimanapati, G. R., Kozuch, D., & Robinson, J. A. (2014). Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets. Nanoscale, 6(20), 11671–11675.

[16]. Chen, J., Wu, K., Ma, H., Hu, W., & Yang, J. (2020). Tunable Rashba spin splitting in Janus transition-metal dichalcogenide monolayers via charge doping. RSC Advances, 10(11), 6388–6394.

[17]. Zhang, Q., Dong, S., Cao, G., & Hu, G. (2020). Exciton polaritons in mixed-dimensional transition metal dichalcogenides heterostructures. Optics Letters, 45(15), 4140–4143.

[18]. Zhou, W., Gong, H., Jin, X., Chen, Y., Li, H., & Liu, S. (2022). Recent progress of two-dimensional transition metal dichalcogenides for thermoelectric applications. Frontiers in Physics, 10. https://doi.org/10.3389/fphy.2022.842789

[19]. Yin, X., Tang, C. S., Zheng, Y., Gao, J., Wu, J., Zhang, H., ... & Wee, A. T. S. (2021). Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 50(18), 10087-10115.

[20]. Zhu, Z., & Tománek, D. (2014). Semiconducting layered blue phosphorus: A computational study. Physical Review Letters, 112(17), 176802.

[21]. Wang, X., Cui, Y., Li, T., Lei, M., Li, J., & Wei, Z. (2019). Recent advances in the functional 2D photonic and optoelectronic devices. Advanced Optical Materials, 7(3). DOI: 10.1002/adom.201801274

[22]. Augustyn, V., & Gogotsi, Y. (2017). 2D materials with nanoconfined fluids for electrochemical energy storage. Joule, 1(3), 443–452.

[23]. Wan, J., Lacey, S. D., Dai, J., Bao, W., Fuhrer, M. S., & Hu, L. (2016). Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chemical Society Reviews, 45(24), 6742–6765.

[24]. Yan, C., Fang, Z., Lv, C., Zhou, X., Chen, G., & Yu, G. (2018). Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano, 12(8), 8670–8677.

[25]. Gao, S., Sun, Y., Lei, F., Liang, L., Liu, J., Bi, W., ...& Xie, Y. (2014). Ultrahigh energy density realized by a single-layer β-Co(OH)₂ all-solid-state asymmetric supercapacitor. Angewandte Chemie International Edition, 53(47), 12789–12793.

[26]. Li, S., Zhang, Y., Cheng, Q., Ye, P., Shen, X., Nie, Y., & Li, L. (2023). Construction of hierarchical porous two-dimensional Zn-MOF-based heterostructures for supercapacitor applications. Journal of Alloys and Compounds, 968. https://doi.org/10.1016/j.jallcom.2023.171971

[27]. Kumar, K. S., Choudhary, N., Jung, Y., & Thomas, J. (2018). Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Letters, 3(2), 482–495.

[28]. Zhang, C., Wang, S., Zhang, H., Feng, Y., Tian, W., Yan, Y., ... &Shi, Y. (2019). Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy & Environmental Science. 12, 3585-3594.

[29]. Iqbal, T., Fatima, S., Bibi, T., & Zafar, M. (2021). Graphene and other two-dimensional materials in advanced solar cells. Optical and Quantum Electronics, 53(5). https://doi.org/10.1007/s11082-021-02852-9

[30]. Kumar, S., Kumar, S., Rai, R. N., Lee, Y., Nguyen Thi, H. C., Kim, S. Y., ... Singh, L. (2023). Recent development in two-dimensional material-based advanced photoanodes for high-performance dye-sensitized solar cells. Solar Energy, 249, 606–623.

[31]. Wang, H., Zhang, X., & Xie, Y. (2018). Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Materials Science and Engineering: R: Reports, 130, 1–39.

[32]. Tian, J., Hao, P., Wei, N., Cui, H., & Liu, H. (2015). 3D Bi₂MoO₆ nanosheet/TiO₂ nanobelt heterostructure: Enhanced photocatalytic activities and photoelectrochemistry performance. ACS Catalysis, 5(8), 4530–4536.

[33]. Zhou, W., Yin, Z., Du, Y., Huang, X., Zeng, Z., Fan, Z., ... Zhang, H. (2013). Synthesis of few-layer MoS₂ nanosheet-coated TiO₂ nanobelt heterostructures for enhanced photocatalytic activities. Small, 9(1), 140–147.


Cite this article

Li,Y. (2025). A review of research on Two-Dimensional semiconductor materials. Advances in Engineering Innovation,16(6),43-49.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Journal:Advances in Engineering Innovation

Volume number: Vol.16
Issue number: Issue 6
ISSN:2977-3903(Print) / 2977-3911(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

[2]. Mannix, A. J., Zhou, Z., Kiraly, B., Wood, J. D., Alducin, D., Myers, B. D., ... & Hersam, M. C. (2018). Borophene as a prototype for synthetic 2D materials development. Nature Nanotechnology, 13(6), 444–450.

[3]. Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X. H., & Zhang, Y. (2014). Black phosphorus field-effect transistors. Nature Nanotechnology, 9(5), 372–377.

[4]. Bafekry, A., Yagmurcukardes, M., Akgenc, B., Ghergherehchi, M., & Nguyen, C. V. (2020). Van der Waals heterostructures of MoS₂ and Janus MoSSe monolayers on graphitic boron. Journal of Physics D: Applied Physics, 53(35). 10.1088/1361-6463/ab876c

[5]. Caldwell, J. D., Aharonovich, I., Cassabois, G., Edgar, J. H., Gil, B., & Basov, D. N. (2019). Photonics with hexagonal boron nitride. Nature Reviews Materials, 4(8), 552–567.

[6]. Zhang, H. (2015). Ultrathin two-dimensional nanomaterials. ACS Nano, 9(10), 9451-9469. DOI: 10.1021/acsnano.5b05040

[7]. Lee, J., Bang, J., & Kang, J. (2022). Nonequilibrium charge-density-wave melting in 1T-TaS₂ triggered by electronic excitation: A real-time time-dependent density functional theory study. The Journal of Physical Chemistry Letters, 13(25), 5711–5718.

[8]. Huang, H., Zha, J., Li, S., Wang, Y., & Zhang, C. (2022). Two-dimensional alloyed transition metal dichalcogenide nanosheets: Synthesis and applications. Chinese Chemical Letters, 33(1), 163–176.

[9]. Zhao, Y., Zhu, L., Zhou, B., & Jiang, S. (2023). Chemical vapor deposition of uniform bilayer PtS₂ flakes for electrocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 25(16), 11311-11315. doi: 10.1039/d3cp01164j

[10]. Hu, Y., Liu, X. Y., Shen, Z. H., Luo, Z. F., Chen, Z. G., & Fan, X. L. (2020). High Curie temperature and carrier mobility of novel Fe, Co and Ni carbide MXenes. Nanoscale, 12(21), 11627–11637.

[11]. Gibertini, M., Koperski, M., Morpurgo, A. F., & Novoselov, K. S. (2019). Magnetic 2D materials and heterostructures. Nature Nanotechnology, 14(5), 408–419.

[12]. Zhao, S., Wan, W., Ge, Y., & Liu, Y. (2021). Prediction of chalcogen-doped VCl₃ monolayers as 2D ferromagnetic semiconductors with enhanced optical absorption. Annalen der Physik, 533(6). https://doi.org/10.1002/andp.202100064

[13]. Castro Neto, A. H., Guinea, F., Peres, N. M. R., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of Modern Physics, 81(1), 109–162.

[14]. Das Sarma, S., Adam, S., Hwang, E. H., & Rossi, E. (2011). Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 83(2), 407–470.

[15]. Bhimanapati, G. R., Kozuch, D., & Robinson, J. A. (2014). Large-scale synthesis and functionalization of hexagonal boron nitride nanosheets. Nanoscale, 6(20), 11671–11675.

[16]. Chen, J., Wu, K., Ma, H., Hu, W., & Yang, J. (2020). Tunable Rashba spin splitting in Janus transition-metal dichalcogenide monolayers via charge doping. RSC Advances, 10(11), 6388–6394.

[17]. Zhang, Q., Dong, S., Cao, G., & Hu, G. (2020). Exciton polaritons in mixed-dimensional transition metal dichalcogenides heterostructures. Optics Letters, 45(15), 4140–4143.

[18]. Zhou, W., Gong, H., Jin, X., Chen, Y., Li, H., & Liu, S. (2022). Recent progress of two-dimensional transition metal dichalcogenides for thermoelectric applications. Frontiers in Physics, 10. https://doi.org/10.3389/fphy.2022.842789

[19]. Yin, X., Tang, C. S., Zheng, Y., Gao, J., Wu, J., Zhang, H., ... & Wee, A. T. S. (2021). Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chemical Society Reviews, 50(18), 10087-10115.

[20]. Zhu, Z., & Tománek, D. (2014). Semiconducting layered blue phosphorus: A computational study. Physical Review Letters, 112(17), 176802.

[21]. Wang, X., Cui, Y., Li, T., Lei, M., Li, J., & Wei, Z. (2019). Recent advances in the functional 2D photonic and optoelectronic devices. Advanced Optical Materials, 7(3). DOI: 10.1002/adom.201801274

[22]. Augustyn, V., & Gogotsi, Y. (2017). 2D materials with nanoconfined fluids for electrochemical energy storage. Joule, 1(3), 443–452.

[23]. Wan, J., Lacey, S. D., Dai, J., Bao, W., Fuhrer, M. S., & Hu, L. (2016). Tuning two-dimensional nanomaterials by intercalation: Materials, properties and applications. Chemical Society Reviews, 45(24), 6742–6765.

[24]. Yan, C., Fang, Z., Lv, C., Zhou, X., Chen, G., & Yu, G. (2018). Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano, 12(8), 8670–8677.

[25]. Gao, S., Sun, Y., Lei, F., Liang, L., Liu, J., Bi, W., ...& Xie, Y. (2014). Ultrahigh energy density realized by a single-layer β-Co(OH)₂ all-solid-state asymmetric supercapacitor. Angewandte Chemie International Edition, 53(47), 12789–12793.

[26]. Li, S., Zhang, Y., Cheng, Q., Ye, P., Shen, X., Nie, Y., & Li, L. (2023). Construction of hierarchical porous two-dimensional Zn-MOF-based heterostructures for supercapacitor applications. Journal of Alloys and Compounds, 968. https://doi.org/10.1016/j.jallcom.2023.171971

[27]. Kumar, K. S., Choudhary, N., Jung, Y., & Thomas, J. (2018). Recent advances in two-dimensional nanomaterials for supercapacitor electrode applications. ACS Energy Letters, 3(2), 482–495.

[28]. Zhang, C., Wang, S., Zhang, H., Feng, Y., Tian, W., Yan, Y., ... &Shi, Y. (2019). Efficient stable graphene-based perovskite solar cells with high flexibility in device assembling via modular architecture design. Energy & Environmental Science. 12, 3585-3594.

[29]. Iqbal, T., Fatima, S., Bibi, T., & Zafar, M. (2021). Graphene and other two-dimensional materials in advanced solar cells. Optical and Quantum Electronics, 53(5). https://doi.org/10.1007/s11082-021-02852-9

[30]. Kumar, S., Kumar, S., Rai, R. N., Lee, Y., Nguyen Thi, H. C., Kim, S. Y., ... Singh, L. (2023). Recent development in two-dimensional material-based advanced photoanodes for high-performance dye-sensitized solar cells. Solar Energy, 249, 606–623.

[31]. Wang, H., Zhang, X., & Xie, Y. (2018). Recent progress in ultrathin two-dimensional semiconductors for photocatalysis. Materials Science and Engineering: R: Reports, 130, 1–39.

[32]. Tian, J., Hao, P., Wei, N., Cui, H., & Liu, H. (2015). 3D Bi₂MoO₆ nanosheet/TiO₂ nanobelt heterostructure: Enhanced photocatalytic activities and photoelectrochemistry performance. ACS Catalysis, 5(8), 4530–4536.

[33]. Zhou, W., Yin, Z., Du, Y., Huang, X., Zeng, Z., Fan, Z., ... Zhang, H. (2013). Synthesis of few-layer MoS₂ nanosheet-coated TiO₂ nanobelt heterostructures for enhanced photocatalytic activities. Small, 9(1), 140–147.