Research Article
Open access
Published on 31 July 2024
Download pdf
Cao,S.;Niu,J.;Yao,L. (2024). Using biomaterials to treat myocardial infarction. Applied and Computational Engineering,84,179-188.
Export citation

Using biomaterials to treat myocardial infarction

Siyuan Cao 1, Jiangheng Niu 2, Lin Yao *,3,
  • 1 Haidian Foreign Language Academy
  • 2 Tsinglan school
  • 3 Shanghai United International School Sanlin Campus

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2755-2721/84/20240881

Abstract

Myocardial infarction (MI) as a risky disease, raises the awareness of the public. It results in insufficient oxygen supply due to cardiovascular blockage and ultimately leads to extensive cell necrosis. Hence, biomaterial-based therapy, angioplasty, and cardiac patches are exposed for the two stages of MI and indicate a promising direction for future MI treatment. This paper focuses on the biomaterials applicable to them one by one, including (1) The crucial function of angioplasty in treating MI; the discussion of its efficacy, mechanics, and results; analysis of clinical studies, material improvements, procedural advancements, and both the effectiveness and limitations of angioplasty. (2) The application of cardiac patches for post-MI treatment; synthetic or natural patches with different structures; review and highlight how these patches promote tissue repair and functional recovery; and the advantages and disadvantages of each patch.

Keywords

biomaterial, myocardial infarction, angioplasty, cardiac patch

[1]. Lu, L., Liu, M., Sun, R., Zheng, Y., & Zhang, P. (2015). Myocardial Infarction: Symptoms and Treatments. Cell Biochemistry and Biophysics, 72: 865–867.

[2]. Salari, N., Morddarvanjoghi, F., Abdolmaleki, A. et al. The global prevalence of myocardial infarction: a systematic review and meta-analysis. BMC Cardiovasc Disord, 23: 206.

[3]. Shaw, L. J., Bugiardini, R., & Merz, C. N. B. (2009). Women and Ischemic Heart Disease. Journal of the American College of Cardiology, 54: 1561–1575.

[4]. Saleh, M., & Ambrose, J. A. (2018). Understanding myocardial infarction. F1000Research, 7: 1378.

[5]. Amoroso, N. S., & Bangalore, S. (2012). Drug-eluting versus bare-metal coronary stents: where are we now? Journal of Comparative Effectiveness Research, 1: 501–508.

[6]. NHS. (2017, October 24). Coronary angioplasty and stent insertion. Nhs.uk. https://www.nhs.uk/conditions/coronary-angioplasty/#:~:text=The%20term%20%22angioplasty%22%20means%20using

[7]. Ali, Z. A. (2017). The science of stents: angioplasty turns 40. Cardiovascular Research, 113: e35–e37.

[8]. Angioplasty. (2018). Medlineplus.gov; National Library of Medicine. https://medlineplus.gov/angioplasty.html

[9]. Byrne, R. A., Joner, M., & Kastrati, A. (2015). Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. European Heart Journal, 36: 3320–3331.

[10]. Ako, J., Bonneau, H. N., Honda, Y., & Fitzgerald, P. J. (2007). Design Criteria for the Ideal Drug-Eluting Stent. The American Journal of Cardiology, 100: S3–S9.

[11]. Lau, K.-W., Mak, K.-H., Hung, J.-S., & Sigwart, U. (2004). Clinical impact of stent construction and design in percutaneous coronary intervention. American Heart Journal, 147: 764–773.

[12]. Hara, H., Nakamura, M., Palmaz, J. C., & Schwartz, R. S. (2006). Role of stent design and coatings on restenosis and thrombosis. Advanced Drug Delivery Reviews, 58: 377–386.

[13]. Sheth, S. D., & Giugliano, R. P. (2014). Coronary Artery Stents: Advances in Technology. Hospital Practice, 42: 83–91.

[14]. Ozaki, Y., Violaris, A. G., & Serruys, P. W. (1996). New stent technologies. Progress in Cardiovascular Diseases, 39: 129–140.

[15]. Schatz, R. A., Goldberg, S., Leon, M., Baim, D., Hirshfeld, J., Cleman, M., Ellis, S., & Topol, E. (1991). Clinical experience with the Palmaz-Schatz coronary stent. Journal of the American College of Cardiology, 17: 155–159.

[16]. Cockerill, I., See, C. W., Young, M. L., Wang, Y., & Zhu, D. (2020). Designing Better Cardiovascular Stent Materials: A Learning Curve. Advanced Functional Materials, 31.

[17]. Scott, N. A., Robinson, K. A., Nunes, G. L., Thomas, C. N., Viel, K. R., King, S. B., Harker, L. A., Rowland, S. M., Juman, I., Cipolla, G. D., & Hanson, S. R. (1995). Comparison of the thrombogenicity of stainless steel and tantalum coronary stents. American Heart Journal, 129: 866-872.

[18]. Kommineni, N., Saka, R., Khan, W., & Domb, A. J. (2017). Non-polymer drug-eluting coronary stents. Drug Delivery and Translational Research, 8: 903–917.

[19]. Im, E., & Hong, M.-K. (2015). Drug-eluting stents to prevent stent thrombosis and restenosis. Expert Review of Cardiovascular Therapy, 14: 87–104.

[20]. Weisel, J.W., Litvinov, R.I. (2017). Fibrin Formation, Structure and Properties. In: Parry, D., Squire, J. (Eds.) Fibrous Proteins: Structures and Mechanisms. Springer International Publishing AG, New York. pp. 405-456.

[21]. Ye, L., Zimmermann, W.-H., Garry, D. J., & Zhang, J. (2013). Patching the Heart. Circulation Research, 113: 922–932.

[22]. Liu, J., Hu, Q., Wang, Z., Xu, C., Wang, X., Gong, G., Mansoor, A., Lee, J., Hou, M., Zeng, L., Zhang, J. R., Jerosch-Herold, M., Guo, T., Bache, R. J., & Zhang, J. (2004). Autologous stem cell transplantation for myocardial repair. American Journal of Physiology-Heart and Circulatory Physiology, 287: H501–H511.

[23]. Janmey, P. A., Winer, J. P., & Weisel, J. W. (2008). Fibrin gels and their clinical and bioengineering applications. Journal of the Royal Society Interface, 6: 1–10.

[24]. Weiss, H. L., Selvaraj, P., Okita, K., Matsumoto, Y., Voie, A., Hoelscher, T., & Szeri, A. J. (2013). Mechanical clot damage from cavitation during sonothrombolysis. The Journal of the Acoustical Society of America, 133: 3159–3175.

[25]. Liu, W., Jawerth, L. M., Sparks, E. A., Falvo, M. R., Hantgan, R. R., Superfine, R., Lord, S. T., & Guthold, M. (2006b). Fibrin Fibers Have Extraordinary Extensibility and Elasticity. Science (New York, N.Y.), 313: 634-634.

[26]. Jockenhoevel, S., Zund, G., Hoerstrup, S. P., Chalabi, K., Sachweh, J. S., Demircan, L., Messmer, B. J., & Turina, M. (2001). Fibrin gel – advantages of a new scaffold in cardiovascular tissue engineering. European Journal of Cardio-Thoracic Surgery, 19: 424–430.

[27]. Jockenhoevel, S., Zund, G., Hoerstrup, S. P., Schnell, A., & Turina, M. (2002). Cardiovascular tissue engineering: a new laminar flow chamber for in vitro improvement of mechanical tissue properties. ASAIO Journal (American Society for Artificial Internal Organs: 1992), 48: 8–11.

[28]. Mol, A., van Lieshout, M. I., Dam-de Veen, C. G., Neuenschwander, S., Hoerstrup, S. P., Baaijens, F. P. T., & Bouten, C. V. C. (2005). Fibrin as a cell carrier in cardiovascular tissue engineering applications. Biomaterials, 26: 3113–3121.

[29]. Zhu, M., Wang, Y., Ferracci, G., Zheng, J., Cho, N.-J., & Lee, B. H. (2019). Gelatin methacryloyl and its hydrogels with an exceptional degree of controllability and batch-to-batch consistency. Scientific Reports, 9: 1–13.

[30]. Naseer, S. M., Manbachi, A., Samandari, M., Walch, P., Gao, Y., Zhang, Y. S., Davoudi, F., Wang, W., Abrinia, K., Cooper, J. M., Khademhosseini, A., & Shin, S. R. (2017). Surface acoustic waves induced micropatterning of cells in gelatin methacryloyl (GelMA) hydrogels. Biofabrication, 9: 015020.

[31]. Klotz, B. J., Gawlitta, D., Rosenberg, A. J. W. P., Malda, J., & Melchels, F. P. W. (2016). Gelatin-Methacryloyl Hydrogels: Towards Biofabrication-Based Tissue Repair. Trends in Biotechnology, 34: 394–407.

[32]. Pepelanova, I., Kruppa, K., Scheper, T., & Lavrentieva, A. (2018b). Gelatin-Methacryloyl (GelMA) Hydrogels with Defined Degree of Functionalization as a Versatile Toolkit for 3D Cell Culture and Extrusion Bioprinting. Bioengineering, 5: 55.

[33]. Hölzl, K., Lin, S., Tytgat, L., Van Vlierberghe, S., Gu, L., & Ovsianikov, A. (2016). Bioink properties before, during and after 3D bioprinting. Biofabrication, 8: 032002.

[34]. Parenteau-Bareil, R., Gauvin, R., & Berthod, F. (2010b). Collagen-Based Biomaterials for Tissue Engineering Applications. Materials, 3: 1863–1887.

[35]. Mei, X., & Cheng, K. (2020). Recent Development in Therapeutic Cardiac Patches. Frontiers in cardiovascular medicine, 7: 610364.

[36]. Rozario, T., & DeSimone, D. W. (2010). The extracellular matrix in development and morphogenesis: A dynamic view. Developmental Biology, 341: 126–140.

[37]. Nikolov, A., & Popovski, N. (2022). Extracellular Matrix in Heart Disease: Focus on Circulating Collagen Type I and III Derived Peptides as Biomarkers of Myocardial Fibrosis and Their Potential in the Prognosis of Heart Failure: A Concise Review. Metabolites, 12: 297.

[38]. Serpooshan, V., Zhao, M., Metzler, S. A., Wei, K., Shah, P. B., Wang, A., Mahmoudi, M., Malkovskiy, A. V., Rajadas, J., Butte, M. J., Bernstein, D., & Ruiz-Lozano, P. (2013). The effect of bioengineered acellular collagen patch on cardiac remodeling and ventricular function post myocardial infarction. Biomaterials, 34: 9048–9055.

[39]. Gervaso, F., Sannino, A., & Peretti, G. M. (2014). The biomaterialist’s task: scaffold biomaterials and fabrication technologies. Joints, 1: 130–137.

[40]. Zhou, J., Xu, C., Wu, G., Cao, X., Zhang, L., Zhai, Z., Zheng, Z., Chen, X., & Wang, Y. (2011). In vitro generation of osteochondral differentiation of human marrow mesenchymal stem cells in novel collagen-hydroxyapatite layered scaffolds. Acta Biomaterialia, 7: 3999–4006.

[41]. Prosecká, E., Rampichová, M., Vojtová, L., Tvrdík, D., Melčáková, Š., Juhasová, J., Plencner, M., Jakubová, R., Jančář, J., Nečas, A., Kochová, P., Klepáček, J., Tonar, Z., & Amler, E. (2011). Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. Journal of Biomedical Materials Research Part A, 99A: 307–315.

[42]. Ganji, Y., Li, Q., Elgar Susanne Quabius, Böttner, M., Selhuber-Unkel, C., & Mehran Kasra. (2016b). Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. Materials Science and Engineering: C, 59: 10–18.

[43]. Chen, Q.-Z., Bismarck, A., Hansen, U., Junaid, S., Tran, M. Q., Harding, S. E., Ali, N. N., & Boccaccini, A. R. (2008). Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, 29: 47–57.

[44]. Ravichandran, R., Venugopal, J. R., Mukherjee, S., Sundarrajan, S., & Ramakrishna, S. (2015). Elastomeric Core/Shell Nanofibrous Cardiac Patch as a Biomimetic Support for Infarcted Porcine Myocardium. Tissue Engineering Part A, 21: 1288–1298.

[45]. Sugiura, T., Hibino, N., Breuer, C. K., & Shinoka, T. (2016). Tissue-engineered cardiac patch seeded with human induced pluripotent stem cell derived cardiomyocytes promoted the regeneration of host cardiomyocytes in a rat model. Journal of Cardiothoracic Surgery, 11:163.

[46]. Liu, Y., Xu, Y., Wang, Z., Wen, D., Zhang, W., Schmull, S., Li, H., Chen, Y., & Xue, S. (2016). Electrospun nanofibrous sheets of collagen/elastin/polycaprolactone improve cardiac repair after myocardial infarction. American Journal of Translational Research, 8: 1678–1694.

[47]. Hashizume, R., Fujimoto, K., Hong, Y., Guan, J., Toma, C., Kimimasa Tobita, & Wagner, W. R. (2013b). Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia–reperfusion injury: A preclinical study of a porous polyurethane material in a porcine model. The Journal of Thoracic and Cardiovascular Surgery, 146: 391-399.

[48]. Hashizume, R., Hong, Y., Takanari, K., Fujimoto, K. L., Tobita, K., & Wagner, W. R. (2013b). The effect of polymer degradation time on functional outcomes of temporary elastic patch support in ischemic cardiomyopathy. Biomaterials, 34: 7353–7363.

[49]. Byrne, R. A., Joner, M., & Kastrati, A. (2015). Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014. European Heart Journal, 36: 3320–3331.

Cite this article

Cao,S.;Niu,J.;Yao,L. (2024). Using biomaterials to treat myocardial infarction. Applied and Computational Engineering,84,179-188.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 4th International Conference on Materials Chemistry and Environmental Engineering

Conference website: https://www.confmcee.org/
ISBN:978-1-83558-573-3(Print) / 978-1-83558-574-0(Online)
Conference date: 13 January 2024
Editor:Seyed Ghaffar
Series: Applied and Computational Engineering
Volume number: Vol.84
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).