Research Article
Open access
Published on 10 January 2025
Download pdf
Hua,S. (2025). Risk Assessment and Regulatory Overview of Sewage Sludge. Applied and Computational Engineering,127,200-215.
Export citation

Risk Assessment and Regulatory Overview of Sewage Sludge

Sirui Hua *,1,
  • 1 China Pharmaceutical University, Chunhua Street, Nanjing, China

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2755-2721/2025.20184

Abstract

With the increase of the global population, the acceleration of urbanization and the impact of climate change, water scarcity is becoming a serious problem. More and more attention has been paid to sewage sludge treated by wastewater treatment plants (WWTP), as potential water resources and soil amendments in agriculture. The application of biosolids can not only increase organic matter and nutrients in soil, but also contribute to the resource utilization of waste. However, the use of biosolids also poses potential environmental and health risks. This review discusses the risks of using biosolids, the harmful substances containing in biosolids, summarizes their concentrations that cause damage to our health, and provides reference standards for the subsequent improvement of national regulations.

Keywords

sewage sludge resource recovery, environmental risks, regulations and management

[1]. Hu J, Zhao L, Luo J, Gong H, Zhu N. A sustainable reuse strategy of converting waste activated sludge into biochar for contaminants removal from water: Modifications, applications and perspectives. J Hazard Mater. 2022 Sep 15;438:129437. doi: 10.1016/j.jhazmat.2022.129437. Epub 2022 Jun 24. PMID: 35810514.

[2]. Stavridou E, Giannakis I, Karamichali I, Kamou NN, Lagiotis G, Madesis P, Emmanouil C, Kungolos A, Nianiou-Obeidat I, Lagopodi AL. Biosolid-Amended Soil Enhances Defense Responses in Tomato Based on Metagenomic Profile and Expression of Pathogenesis-Related Genes. Plants (Basel). 2021 Dec 16;10(12):2789. doi: 10.3390/plants10122789. PMID: 34961260; PMCID: PMC8709368.

[3]. Li T, Winnel M, Lin H, Panther J, Liu C, O'Halloran R, Wang K, An T, Wong PK, Zhang S, Zhao H. A reliable sewage quality abnormal event monitoring system. Water Res. 2017 Sep 15;121:248-257. doi: 10.1016/j.watres.2017.05.040. Epub 2017 May 20. PMID: 28550813.

[4]. Izydorczyk G, Mikula K, Skrzypczak D, Trzaska K, Moustakas K, Witek-Krowiak A, Chojnacka K. Agricultural and non-agricultural directions of bio-based sewage sludge valorization by chemical conditioning. Environ Sci Pollut Res Int. 2021 Sep;28(35):47725-47740. doi: 10.1007/s11356-021-15293-4. Epub 2021 Jul 19. PMID: 34278553; PMCID: PMC8410704.

[5]. Marchuk S, Tait S, Sinha P, Harris P, Antille DL, McCabe BK. Biosolids-derived fertilisers: A review of challenges and opportunities. Sci Total Environ. 2023 Jun 1;875:162555. doi: 10.1016/j.scitotenv.2023.162555. Epub 2023 Mar 6. PMID: 36889394.

[6]. Meyer T, Edwards EA. Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Res. 2014 Nov 15;65:321-49. doi: 10.1016/j.watres.2014.07.022. Epub 2014 Jul 24. Erratum in: Water Res. 2015 Jan 1;68:849. doi: 10.1016/j.watres.2014.10.059. PMID: 25150519.

[7]. Pratap V, Kumar S, Yadav BR. Sewage sludge management and enhanced energy recovery using anaerobic digestion: an insight. Water Sci Technol. 2024 Aug;90(3):696-720. doi: 10.2166/wst.2024.269. Epub 2024 Aug 5. PMID: 39141030.

[8]. Ahammad, S.Z., & Sreekrishnan, T.R. (2016). Biogas: An Evolutionary Perspective in the Indian Context. In C. Soccol, S. Brar, C. Faulds, & L. Ramos (Eds.), Green Fuels Technology (pp. 17-1 - 17-18). Springer.

[9]. Md Mosleh Uddin, Mark Mba Wright. (2022). Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews, 2(1), 123-134. https://doi.org/10.1515/psr-2021-0068

[10]. Chandra, R., Takeuchi, H., Hasegawa, T., 2012. Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renew. Sustain. Energy Rev. 16, 146–1476. https://doi.org/10.1016/j. rser.2011.11.035.

[11]. Subbarao PMV, D' Silva TC, Adlak K, Kumar S, Chandra R, Vijay VK. Anaerobic digestion as a sustainable technology for efficiently utilizing biomass in the context of carbon neutrality and circular economy. Environ Res. 2023 Oct 1;234:116286. doi: 10.1016/j.envres.2023.116286. Epub 2023 May 30. PMID: 37263473.

[12]. Elliott A, Mahmood T. Pretreatment technologies for advancing anaerobic digestion of pulp and paper biotreatment residues. Water Res. 2007 Nov;41(19):4273-86. doi: 10.1016/j.watres.2007.06.017. Epub 2007 Jun 15. PMID: 17628630.

[13]. Hušek M, Moško J, Pohořelý M. Sewage sludge treatment methods and P-recovery possibilities: Current state-of-the-art. J Environ Manage. 2022 Aug 1;315:115090. doi: 10.1016/j.jenvman.2022.115090. Epub 2022 Apr 27. PMID: 35489186.

[14]. Krueger BC, Fowler GD, Templeton MR. Critical analytical parameters for faecal sludge characterisation informing the application of thermal treatment processes. J Environ Manage. 2021 Feb 15;280:111658. doi: 10.1016/j.jenvman.2020.111658. Epub 2020 Nov 24. PMID: 33246749.

[15]. Hedayati Marzbali M, Hakeem IG, Ngo T, Balu R, Jena MK, Vuppaladadiyam A, Sharma A, Choudhury NR, Batstone DJ, Shah K. A critical review on emerging industrial applications of chars from thermal treatment of biosolids. J Environ Manage. 2024 Sep 4;369:122341. doi: 10.1016/j.jenvman.2024.122341. Epub ahead of print. PMID: 39236613.

[16]. Novak, J. T. (2006). Dewatering of Sewage Sludge. Drying Technology, 24(10), 1257–1262.

[17]. Xinyu Zhang, Qiang Wang, Zhe Liu, Lanyi Zhi, Bo Jiao, Hui Hu, Xiaojie Ma, Dominic Agyei, Aimin Shi. Plant protein-based emulsifiers: Mechanisms, techniques for emulsification enhancement and applications. Food Hydrocolloids, Volume 144, 2023, 109008, ISSN 0268-005X, https://doi.org/10.1016/j.foodhyd.2023.109008.

[18]. Kocbek E, Garcia HA, Hooijmans CM, Mijatović I, Lah B, Brdjanovic D. Microwave treatment of municipal sewage sludge: Evaluation of the drying performance and energy demand of a pilot-scale microwave drying system. Sci Total Environ. 2020 Nov 10;742:140541. doi: 10.1016/j.scitotenv.2020.140541. Epub 2020 Jun 27. PMID: 32629261.

[19]. Li Y, Campos LC, Hu Y. Microwave pretreatment of wastewater sludge technology-a scientometric-based review. Environ Sci Pollut Res Int. 2024 Apr;31(18):26432-26451. doi: 10.1007/s11356-024-32931-9. Epub 2024 Mar 27. PMID: 38532216; PMCID: PMC11052793.

[20]. Hong SM, Park JK, Lee YO. Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Res. 2004 Mar;38(6):1615-25. doi: 10.1016/j.watres.2003.12.011. PMID: 15016539.

[21]. Pino-Jelcic SA, Hong SM, Park JK (2006) Enhanced anaerobic biodegradability and inactivation of fecal coliforms and Salmonella spp. in wastewater sludge by using microwaves. Water Environ Res 78:209–216.

[22]. Phung LD, Ichikawa M, Pham DV, Sasaki A, Watanabe T. High yield of protein-rich forage rice achieved by soil amendment with composted sewage sludge and topdressing with treated wastewater. Sci Rep. 2020 Jun 23;10(1):10155. doi: 10.1038/s41598-020-67233-w. PMID: 32576900; PMCID: PMC7311477.

[23]. Han W, Chen S, Tan X, Li X, Pan H, Ma P, Wu Z, Xie Q. Microbial community succession in response to sludge composting efficiency and heavy metal detoxification during municipal sludge composting. Front Microbiol. 2022 Oct 5;13:1015949. doi: 10.3389/fmicb.2022.1015949. PMID: 36274704; PMCID: PMC9581145.

[24]. Vergara Cid, Carolina; Ferreyroa, Gisele V.; Pignata, MarÃ-a L.; Rodriguez, Judith H. (2020). Biosolid compost amendment increases soil fertility and soybean growth. Journal of Plant Nutrition, (), 1–10. doi:10.1080/01904167.2020.1845374

[25]. Pérez-Gimeno A, Navarro-Pedreño J, Almendro-Candel MB, Gómez I, Zorpas AA (2019) The use of wastes (organic and inorganic) in land restoration in relation to their characteristics and cost. Waste Manag Res 37:502–507.

[26]. Chen, Z., Li, Y., Peng, Y., Ye, C., & Zhang, S. (2021). Effects of antibiotics on hydrolase activity and structure of microbial community during aerobic co-composting of food waste with sewage sludge. Bioresource technology, 321, 124506.

[27]. Sofia Maria Muscarella, Luigi Badalucco, Vito Armando Laudicina, Zhiwei Wang, Giorgio Mannina. 2023. “Chapter 6 - Wastewater treatment sludge composting”. Current Developments in Biotechnology and Bioengineering. 115-136.

[28]. Manea, E.E.; Bumbac, C. Sludge Composting—Is This a Viable Solution for Wastewater Sludge Management? Water 2024, 16, 2241.

[29]. Meng, L., Li, W., Zhang, S. et al. Improving sewage sludge compost process and quality by carbon sources addition. Sci Rep 11, 1319 (2021).

[30]. Vandecasteele, B., Willekens, K., Steel, H., D’Hose, T., Van Waes, C., Bert, W.: Feedstock mixture composition as key factor for C/P ratio and phosphorus availability in composts: role of biodegradation potential, biochar amendment and calcium content. Waste Biomass Valoriz. 8, 2553–2567 (2017).

[31]. Tchounwou P B, Yedjou C G, Patlolla A K, et al. Heavy metal toxicity and the environment[J]. Molecular, clinical and environmental toxicology: volume 3: environmental toxicology, 2012: 133-164.

[32]. He ZL, Yang XE, Stoffella PJ. Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol. 2005;19(2-3):125-40. doi: 10.1016/j.jtemb.2005.02.010. Epub 2005 Oct 24. PMID: 16325528.

[33]. Smith SR. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int. 2009 Jan;35(1):142-56. doi: 10.1016/j.envint.2008.06.009. Epub 2008 Aug 8. PMID: 18691760.

[34]. Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: Issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1-3), 1–8. doi:10.1016/j.jhazmat.2009.09.113

[35]. Zuo W, Xu K, Zhang W, Wang Y, Gu C, Bai Y, Shan Y, Dai Q. Heavy metal distribution and uptake by maize in a mudflat soil amended by vermicompost derived from sewage sludge. Environ Sci Pollut Res Int. 2019 Oct;26(29):30154-30166. doi: 10.1007/s11356-019-06184-w. Epub 2019 Aug 17. PMID: 31422536.

[36]. Musilova, J., Bystricka, J., Lachman, J., Harangozo, L., Trebichalsky, P., Volnova, B., 2016. Potatoes – a crop resistant against input of heavy metals from the metallicaly contaminated soil. Int. J. Phytoremediation 18, 547–552. https://doi.org/10.1080/ 15226514.2015.1086303.

[37]. Nag R, O'Rourke SM, Cummins E. A GIS study to rank Irish agricultural lands with background and anthropogenic concentrations of metal(loid)s in soil. Chemosphere. 2022 Jan;286(Pt 3):131928. doi: 10.1016/j.chemosphere.2021.131928. Epub 2021 Aug 17. PMID: 34418654.

[38]. Hemdan NY, Emmrich F, Faber S, Lehmann J, Sack U. Alterations of TH1/TH2 reactivity by heavy metals: possible consequences include induction of autoimmune diseases. Ann N Y Acad Sci. 2007 Aug;1109:129-37. doi: 10.1196/annals.1398.015. PMID: 17785298.

[39]. Yang H, Dong H, Huang Y, Chen G, Wang J. Interactions of microplastics and main pollutants and environmental behavior in soils. Sci Total Environ. 2022 May 15;821:153511. doi: 10.1016/j.scitotenv.2022.153511. Epub 2022 Jan 29. PMID: 35101494.

[40]. Wen, Y., Schoups, G. & van de Giesen, N. Organic pollution of rivers: Combined threats of urbanization, livestock farming and global climate change. Sci Rep 7, 43289 (2017).

[41]. Ma D, Yi H, Lai C, Liu X, Huo X, An Z, Li L, Fu Y, Li B, Zhang M, Qin L, Liu S, Yang L. Critical review of advanced oxidation processes in organic wastewater treatment. Chemosphere. 2021 Jul;275:130104. doi: 10.1016/j.chemosphere.2021.130104. Epub 2021 Feb 27. PMID: 33984911.

[42]. Guo W, Pan B, Sakkiah S, Yavas G, Ge W, Zou W, Tong W, Hong H. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int J Environ Res Public Health. 2019 Nov 8;16(22):4361. doi: 10.3390/ijerph16224361. PMID: 31717330; PMCID: PMC6888492.

[43]. Gaur, N., Narasimhulu, K., & Y, P. (2018). Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. Journal of Cleaner Production, 198, 1602–1631. doi:10.1016/j.jclepro.2018.07.076

[44]. Ashraf MA. Persistent organic pollutants (POPs): a global issue, a global challenge. Environ Sci Pollut Res Int. 2017 Feb;24(5):4223-4227. doi: 10.1007/s11356-015-5225-9. Epub 2015 Sep 15. PMID: 26370807.

[45]. Chih-Feng Chen, Yun-Ru Ju, Yee Cheng Lim, Ming-Huang Wang, Frank Paolo Jay B. Albarico, Chiu-Wen Chen, Cheng-Di Dong. (2022). Occurrence and ecological risks of PAHs in the dissolved and particulate phases of coastal surface water of Taiwan. Regional Studies in Marine Science. 2022 Jul.

[46]. Hussein I. Abdel-Shafy, Mona S.M. Mansour. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, Volume 25, Issue 1, 2016, Pages 107-123, ISSN 1110-0621.

[47]. Moorthy B, Chu C, Carlin DJ. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci. 2015 May;145(1):5-15. doi: 10.1093/toxsci/kfv040. PMID: 25911656; PMCID: PMC4408964.

[48]. Subashchandrabose, S. R., Krishnan, K., Gratton, E., Megharaj, M., & Naidu, R. (2014). Potential of Fluorescence Imaging Techniques To Monitor Mutagenic PAH Uptake by Microalga. Environmental Science & Technology, 48(16), 9152–9160. doi:10.1021/es500387v

[49]. Dhar, K., Subashchandrabose, S. R., Venkateswarlu, K., Krishnan, K., & Megharaj, M. (2019). Anaerobic Microbial Degradation of Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. Reviews of Environmental Contamination and Toxicology Volume 251, 25–108. doi:10.1007/398_2019_29

[50]. Patel AB, Shaikh S, Jain KR, Desai C, Madamwar D. Polycyclic Aromatic Hydrocarbons: Sources, Toxicity, and Remediation Approaches. Front Microbiol. 2020 Nov 5;11:562813. doi: 10.3389/fmicb.2020.562813. PMID: 33224110; PMCID: PMC7674206.

[51]. Pajurek M, Warenik-Bany M, Mikolajczyk S. Feed as a source of dioxins and PCBs. Chemosphere. 2022 Dec;308(Pt 1):136243. doi: 10.1016/j.chemosphere.2022.136243. Epub 2022 Aug 30. PMID: 36055594.

[52]. Gentleman DJ. PCB pop. Environ Sci Technol. 2010 Apr 15;44(8):2747-8. doi: 10.1021/es100838c. PMID: 20384369.

[53]. Dai Q, Min X, Weng M. A review of polychlorinated biphenyls (PCBs) pollution in indoor air environment. J Air Waste Manag Assoc. 2016 Oct;66(10):941-50. doi: 10.1080/10962247.2016.1184193. PMID: 27191511.

[54]. Mukerjee, D. (1998). Assessment of Risk from Multimedia Exposures of Children to Environmental Chemicals. Journal of the Air & Waste Management Association, 48(6), 483–501.

[55]. Jartun M, Ottesen RT, Steinnes E, Volden T. Painted surfaces--important sources of polychlorinated biphenyls (PCBs) contamination to the urban and marine environment. Environ Pollut. 2009 Jan;157(1):295-302. doi: 10.1016/j.envpol.2008.06.036. Epub 2008 Aug 15. PMID: 18706746.

[56]. Qiang Z, Nie Y, Ben W, Qu J, Zhang H. Degradation of endocrine-disrupting chemicals during activated sludge reduction by ozone. Chemosphere. 2013 Apr;91(3):366-73. doi: 10.1016/j.chemosphere.2012.11.069. Epub 2012 Dec 25. PMID: 23273738.

[57]. Kavlock, R.J., Daston, G.P., DeRosa, C., Fenner-Crisp, P., Gray, L.E., Kaattari, S., et al., 1996. Research needs for the assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ. Health Perspect. 104 (4), 715–740.

[58]. Hu Y, Zhu Q, Yan X, Liao C, Jiang G. Occurrence, fate and risk assessment of BPA and its substituents in wastewater treatment plant: A review. Environ Res. 2019 Nov;178:108732. doi: 10.1016/j.envres.2019.108732. Epub 2019 Sep 7. PMID: 31541806.

[59]. Mansur A, Adir M, Yerushalmi G, Hourvitz A, Gitman H, Yung Y, Orvieto R, Machtinger R. Does BPA alter steroid hormone synthesis in human granulosa cells in vitro? Hum Reprod. 2016 Jul;31(7):1562-9. doi: 10.1093/humrep/dew088. Epub 2016 Apr 24. PMID: 27112698.

[60]. Combarnous Y, Nguyen TMD. Comparative Overview of the Mechanisms of Action of Hormones and Endocrine Disruptor Compounds. Toxics. 2019 Jan 24;7(1):5. doi: 10.3390/toxics7010005. PMID: 30682876; PMCID: PMC6468742.

[61]. Rahul Prasad Singh, Priya Yadav, Rajan Kumar Gupta, Sandeep Kumar Singh, Hariom Verma, Prashant Kumar Singh, Kaushalendra, Kapil D. Pandey, Ajay Kumar. Chapter Fourteen-Pathogenic microbes in wastewater: Identification and characterization. Advances in Chemical Pollution, Environmental Management and Protection. 2023.247-262.

[62]. Martín-Díaz J, Lucena F, Blanch AR, Jofre J. Review: Indicator bacteriophages in sludge, biosolids, sediments and soils. Environ Res. 2020 Mar;182:109133. doi: 10.1016/j.envres.2020.109133. Epub 2020 Jan 15. PMID: 32069755.

[63]. Brisolara KF, Maal-Bared R, Sobsey MD, Reimers RS, Rubin A, Bastian RK, Gerba C, Smith JE, Bibby K, Kester G, Brown S. Assessing and managing SARS-CoV-2 occupational health risk to workers handling residuals and biosolids. Sci Total Environ. 2021 Jun 20;774:145732. doi: 10.1016/j.scitotenv.2021.145732. Epub 2021 Feb 8. PMID: 33611008; PMCID: PMC7869681.

[64]. Wong K, Onan BM, Xagoraraki I. Quantification of enteric viruses, pathogen indicators, and Salmonella bacteria in class B anaerobically digested biosolids by culture and molecular methods. Appl Environ Microbiol. 2010 Oct;76(19):6441-8. doi: 10.1128/AEM.02685-09. Epub 2010 Aug 6. PMID: 20693452; PMCID: PMC2950467.

[65]. Droffner ML, Brinton WF. Survival of E. coli and Salmonella populations in aerobic thermophilic composts as measured with DNA gene probes. Zentralbl Hyg Umweltmed. 1995 Jun;197(5):387-97. PMID: 8672222.

[66]. Struck C, Rüsch S, Strehlow B. Control Strategies of Clubroot Disease Caused by Plasmodiophora brassicae. Microorganisms. 2022 Mar 14;10(3):620. doi: 10.3390/microorganisms10030620. PMID: 35336194; PMCID: PMC8949847.

[67]. Botero-Ramirez A, Hwang SF, Strelkov SE. Plasmodiophora brassicae Inoculum Density and Spatial Patterns at the Field Level and Relation to Soil Characteristics. Pathogens. 2021 Apr 21;10(5):499. doi: 10.3390/pathogens10050499. PMID: 33919064; PMCID: PMC8143121.

[68]. Ziarati M, Zorriehzahra MJ, Hassantabar F, Mehrabi Z, Dhawan M, Sharun K, Emran TB, Dhama K, Chaicumpa W, Shamsi S. Zoonotic diseases of fish and their prevention and control. Vet Q. 2022 Dec;42(1):95-118. doi: 10.1080/01652176.2022.2080298. PMID: 35635057; PMCID: PMC9397527.

[69]. Skowron K, Grudlewska-Buda K, Khamesipour F. Zoonoses and emerging pathogens. BMC Microbiol. 2023 Aug 23;23(1):232. doi: 10.1186/s12866-023-02984-w. PMID: 37612609; PMCID: PMC10463800.

[70]. Escudero-Pérez B, Lalande A, Mathieu C, Lawrence P. Host-Pathogen Interactions Influencing Zoonotic Spillover Potential and Transmission in Humans. Viruses. 2023 Feb 22;15(3):599. doi: 10.3390/v15030599. PMID: 36992308; PMCID: PMC10060007.

[71]. Benford, D.J. Risk assessment of chemical contaminants and residues in foods. In Persistent Organic Pollutants and Toxic Metals in Foods; Rose, M., Fernandez, A., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 173–187.

[72]. Charkiewicz AE, Omeljaniuk WJ, Nowak K, Garley M, Nikliński J. Cadmium Toxicity and Health Effects-A Brief Summary. Molecules. 2023 Sep 14;28(18):6620. doi: 10.3390/molecules28186620. PMID: 37764397; PMCID: PMC10537762.

[73]. Food and Agriculture Organization (FAO); World Health Organization (WHO). Joint FAO/WHO food standards programme, codex committee on food additives and contaminants. In Proceedings of the 33rd Session CODEX, Hague, The Netherlands, 12–16 March 2001; pp. 121–126.

[74]. European Food Safety Authority. Panel on Contaminants in the food chain (CONTAM). Scientific opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J. 2018, 10, 2985.

[75]. Abdul KS, Jayasinghe SS, Chandana EP, Jayasumana C, De Silva PM. Arsenic and human health effects: A review. Environ Toxicol Pharmacol. 2015 Nov;40(3):828-46. doi: 10.1016/j.etap.2015.09.016. Epub 2015 Sep 30. PMID: 26476885.

[76]. Klotz K, Weistenhöfer W, Neff F, Hartwig A, van Thriel C, Drexler H. The Health Effects of Aluminum Exposure. Dtsch Arztebl Int. 2017 Sep 29;114(39):653-659. doi: 10.3238/arztebl.2017.0653. PMID: 29034866; PMCID: PMC5651828.

[77]. Shin DY, Lee SM, Jang Y, Lee J, Lee CM, Cho EM, Seo YR. Adverse Human Health Effects of Chromium by Exposure Route: A Comprehensive Review Based on Toxicogenomic Approach. Int J Mol Sci. 2023 Feb 8;24(4):3410. doi: 10.3390/ijms24043410. PMID: 36834821; PMCID: PMC9963995.

[78]. Institute of Medicine, Food and Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academies Press; 2001.

[79]. Lindner, S., Lucchini, R. & Broberg, K. Genetics and Epigenetics of Manganese Toxicity. Curr Envir Health Rpt 9, 697–713 (2022).

[80]. Han, J.; Zhang, R.; Tang, J.; Chen, J.; Zheng, C.; Zhao, D.; Wang, J.; Zhang, H.; Qi, X.; Wu, X.; et al. Occurrence and Exposure Assessment of Nickel in Zhejiang Province, China. Toxics 2024, 12, 169.

[81]. Stiles LI, Ferrao K, Mehta KJ. Role of zinc in health and disease. Clin Exp Med. 2024 Feb 17;24(1):38. doi: 10.1007/s10238-024-01302-6. PMID: 38367035; PMCID: PMC10874324.

[82]. U.S. Environmental Protection Agency. Integrated Risk Information System (IRIS) on Aroclor 1016. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. 1999.

[83]. U.S. Environmental Protection Agency. Integrated Risk Information System (IRIS) on Aroclor 1254. National Center for Environmental Assessment, Office of Research and Development, Washington, DC. 1999.

[84]. Harwood VJLevine AD, Scott TM, Chivukula V, Lukasik J, Farrah SR, Rose JB.2005.Validity of the Indicator Organism Paradigm for Pathogen Reduction in Reclaimed Water and Public Health Protection. Appl Environ Microbiol71:.https://doi.org/10.1128/AEM.71.6.3163-3170.2005

[85]. Nag R, O'Rourke SM, Cummins E. Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s - A focus on Ireland. Sci Total Environ. 2022 Jan 1;802:149839. doi: 10.1016/j.scitotenv.2021.149839. Epub 2021 Aug 24. PMID: 34455276.

[86]. Ullah N, Ur Rehman M, Ahmad B, Ali I, Younas M, Aslam MS, Rahman AU, Taheri E, Fatehizadeh A, Rezakazemi M. Assessment of heavy metals accumulation in agricultural soil, vegetables and associated health risks. PLoS One. 2022 Jun 16;17(6):e0267719. doi: 10.1371/journal.pone.0267719. PMID: 35709202; PMCID: PMC9202934.

[87]. Jamshidi A, Morovati M, Golbini Mofrad MM, Panahandeh M, Soleimani H, Abdolahpour Alamdari H. Water quality evaluation and non-cariogenic risk assessment of exposure to nitrate in groundwater resources of Kamyaran, Iran: spatial distribution, Monte-Carlo simulation, and sensitivity analysis. J Environ Health Sci Eng. 2021 May 26;19(1):1117-1131. doi: 10.1007/s40201-021-00678-x. PMID: 34150299; PMCID: PMC8172702.

[88]. Sanaei, F., Amin, M.M., Alavijeh, Z.P. et al. Health risk assessment of potentially toxic elements intake via food crops consumption: Monte Carlo simulation-based probabilistic and heavy metal pollution index. Environ Sci Pollut Res 28, 1479–1490 (2021).

[89]. Bruzzoniti, M.C., Tumiatti, V., Quazzo, A. et al. Determination of persistent organic pollutants in urban and peri-urban wastewater sludge: environmental and carcinogenic human risk assessment in the case of land application. Environ Sci Pollut Res (2024).

[90]. Wu, J., Zhang, K., Cen, C. et al. Role of bulk nanobubbles in removing organic pollutants in wastewater treatment. AMB Expr 11, 96 (2021).

[91]. Tiwari A, Ahmed W, Oikarinen S, Sherchan SP, Heikinheimo A, Jiang G, Simpson SL, Greaves J, Bivins A. Application of digital PCR for public health-related water quality monitoring. Sci Total Environ. 2022 Sep 1;837:155663. doi: 10.1016/j.scitotenv.2022.155663. Epub 2022 May 4. PMID: 35523326.

[92]. Keerthana K, George L, Dhasarathan SS P, MOLECULAR CHARACTERIZATION OF FOOD BORNE PATHOGENS BY USING PCR METHOD (2022) YMER Digit 21:33–39.

[93]. Larivé O, Brandani J, Dubey M, Kohn T. An integrated cell culture reverse transcriptase quantitative PCR (ICC-RTqPCR) method to simultaneously quantify the infectious concentrations of eight environmentally relevant enterovirus serotypes. J Virol Methods. 2021 Oct;296:114225. doi: 10.1016/j.jviromet.2021.114225. Epub 2021 Jun 30. PMID: 34216645.

[94]. Wong K, Onan BM, Xagoraraki I. Quantification of enteric viruses, pathogen indicators, and Salmonella bacteria in class B anaerobically digested biosolids by culture and molecular methods. Appl Environ Microbiol. 2010 Oct;76(19):6441-8. doi: 10.1128/AEM.02685-09. Epub 2010 Aug 6. PMID: 20693452; PMCID: PMC2950467.

[95]. Pepper IL, Zerzghi H, Brooks JP, Gerba CP. Sustainability of land application of class B biosolids. J Environ Qual. 2008 Sep-Oct;37(5 Suppl):S58-67. doi: 10.2134/jeq2007.0321. PMID: 18765778.

Cite this article

Hua,S. (2025). Risk Assessment and Regulatory Overview of Sewage Sludge. Applied and Computational Engineering,127,200-215.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering

Conference website: https://2025.confmcee.org/
ISBN:978-1-83558-919-9(Print) / 978-1-83558-920-5(Online)
Conference date: 17 January 2025
Editor:Harun CELIK
Series: Applied and Computational Engineering
Volume number: Vol.127
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).