Advanced metal-organic frameworks materials for drug delivery

Research Article
Open access

Advanced metal-organic frameworks materials for drug delivery

Yang Zhang 1*
  • 1 Wuxi DIPONT School of Arts and Science    
  • *corresponding author 000261@nkcswx.cn
Published on 21 July 2023 | https://doi.org/10.54254/2755-2721/7/20230389
ACE Vol.7
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-915371-61-4
ISBN (Online): 978-1-915371-62-1

Abstract

Metal-organic frameworks (MOFs) are porous crystalline polymers composed of coordination reactions between organic ligands and metal ions. They have high loading capacity, high specific surface area, high flexibility and a variety of different material preparation options. In different fields, MOFs also play different roles. It has been employed as a promising material for efficient drug delivery systems due to its unique characteristic and structures. This paper discusses the application of nanoscale MOFs (NMOFs) in the field of drug delivery and introduces its advantages and disadvantages compared with traditional DDSs materials, as well as different methods used as carriers for different therapeutic gases (CO, NO, O2), thereby achieve targeted delivery of drugs. The different biological toxicity, structural stability, morphology under physiological conditions, and control of pore channels caused by different metal linkers and organic ligands are studied and analyzed, which provides the future development of new drug-carrying systems and MOFs in other drug fields. Insights and guidance.

Keywords:

MOFs, NMOFs, Drug Delivery

Zhang,Y. (2023). Advanced metal-organic frameworks materials for drug delivery. Applied and Computational Engineering,7,412-418.
Export citation

References

[1]. Ma Z., Moulton B. 2011 Coordination Chemistry Reviews 255 1623–1641

[2]. Lai Xinyi, Wang Zhiyong , Zheng Yongtai , Chen Yongming. 2020. Progress in Chemistry, 31(6): 783-790.

[3]. Taylor-Pashow K M L, Della Rocca J, Xie Z, Tran S, Lin W., 2009, J. Am. Chem. Soc.,131(40):14261.

[4]. Lu K, He C, Lin W., 2014, J. Am. Chem. Soc., 136(48):16712.

[5]. Ferey G, Mellot-Draznieks C, Serre C, Millange F. 2005. Acc Chem Res, 38:217e25.

[6]. Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G . Angew. Chem.-Int. Ed., 2006,45(36):5974.

[7]. Liu D, He C, Poon C, Lin W 2014 J. Mater. Chem. B, 2014,2(46):8249.

[8]. Duan Y, Ye F, Huang Y, Qin Y, He C, Zhao S. 2018 Chem Commun 2018;54:5377e80.

[9]. Xiao J, Zhu Y, Huddleston S, Li P, Xiao B, Farha OK, et al. 2018. ACS Nano, 12:1023e32.

[10]. Ganta S, Devalapally H, Shahiwala A, 2008, Amiji M J. Controlled Release, 126(3):187.

[11]. Shenoy D, Little S, Langer R, 2005, Amiji M.Pharm. Res., 22(12):2107.

[12]. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström A M, Zou X ,2016, J. Am. Chem. Soc., 138(3):962.

[13]. Cheng H, Zhu J Y, Li S Y, Zeng J Y, Lei Q, Chen K W, Zhang C, Zhang X,2016, Z Adv. Funct. Mater., 26(43):7847.

[14]. A. Nakao, R. Sugimoto, T.R. Billiar, K.R. McCurry, J. Clin. Biochem. 2009 Nutr. 44 1–13.

[15]. K. Van Meter, 2005, Undersea Hyperb. Med. 32, 61–83.

[16]. Cimsit M., UzunG., Yıldız S., 2009, Anti-infective Therapy 7,1015–1026.

[17]. McKinlay A.C, Xiao B., Wragg D.S. , Wheatley P.S. , Megson I.L. , Morris R.E.,2008, J. Am. Chem. Soc. 130,10440 -10444.

[18]. Harding J.L., Reynolds M.M., 2012, J. Am. Chem. Soc. 134, 3330–3333.

[19]. Nguyen, D.; Nguyen, T. K.; Rice, S. A.; Boyer, C., 2015, Biomacromolecules, 16, 2776.

[20]. WANG Huai-song, DING Ya., 2020. Acta Pharmaceutica Sinica, 55(7): 1511-1519.


Cite this article

Zhang,Y. (2023). Advanced metal-organic frameworks materials for drug delivery. Applied and Computational Engineering,7,412-418.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2023), Part II

ISBN:978-1-915371-61-4(Print) / 978-1-915371-62-1(Online)
Editor:Ioannis Spanopoulos, Niaz Ahmed, Sajjad Seifi Mofarah
Conference website: https://www.confmcee.org/
Conference date: 18 March 2023
Series: Applied and Computational Engineering
Volume number: Vol.7
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Ma Z., Moulton B. 2011 Coordination Chemistry Reviews 255 1623–1641

[2]. Lai Xinyi, Wang Zhiyong , Zheng Yongtai , Chen Yongming. 2020. Progress in Chemistry, 31(6): 783-790.

[3]. Taylor-Pashow K M L, Della Rocca J, Xie Z, Tran S, Lin W., 2009, J. Am. Chem. Soc.,131(40):14261.

[4]. Lu K, He C, Lin W., 2014, J. Am. Chem. Soc., 136(48):16712.

[5]. Ferey G, Mellot-Draznieks C, Serre C, Millange F. 2005. Acc Chem Res, 38:217e25.

[6]. Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G . Angew. Chem.-Int. Ed., 2006,45(36):5974.

[7]. Liu D, He C, Poon C, Lin W 2014 J. Mater. Chem. B, 2014,2(46):8249.

[8]. Duan Y, Ye F, Huang Y, Qin Y, He C, Zhao S. 2018 Chem Commun 2018;54:5377e80.

[9]. Xiao J, Zhu Y, Huddleston S, Li P, Xiao B, Farha OK, et al. 2018. ACS Nano, 12:1023e32.

[10]. Ganta S, Devalapally H, Shahiwala A, 2008, Amiji M J. Controlled Release, 126(3):187.

[11]. Shenoy D, Little S, Langer R, 2005, Amiji M.Pharm. Res., 22(12):2107.

[12]. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström A M, Zou X ,2016, J. Am. Chem. Soc., 138(3):962.

[13]. Cheng H, Zhu J Y, Li S Y, Zeng J Y, Lei Q, Chen K W, Zhang C, Zhang X,2016, Z Adv. Funct. Mater., 26(43):7847.

[14]. A. Nakao, R. Sugimoto, T.R. Billiar, K.R. McCurry, J. Clin. Biochem. 2009 Nutr. 44 1–13.

[15]. K. Van Meter, 2005, Undersea Hyperb. Med. 32, 61–83.

[16]. Cimsit M., UzunG., Yıldız S., 2009, Anti-infective Therapy 7,1015–1026.

[17]. McKinlay A.C, Xiao B., Wragg D.S. , Wheatley P.S. , Megson I.L. , Morris R.E.,2008, J. Am. Chem. Soc. 130,10440 -10444.

[18]. Harding J.L., Reynolds M.M., 2012, J. Am. Chem. Soc. 134, 3330–3333.

[19]. Nguyen, D.; Nguyen, T. K.; Rice, S. A.; Boyer, C., 2015, Biomacromolecules, 16, 2776.

[20]. WANG Huai-song, DING Ya., 2020. Acta Pharmaceutica Sinica, 55(7): 1511-1519.