References
[1]. Callow, J. A.; Callow, M. E. Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings. Nat. Commun. 2011, 2 (1), 244. https://doi.org/10.1038/ncomms1251.
[2]. Bixler, G. D.; Theiss, A.; Bhushan, B.; Lee, S. C. Anti-Fouling Properties of Microstructured Surfaces Bio-Inspired by Rice Leaves and Butterfly Wings. J. Colloid Interface Sci. 2014, 419, 114–133. https://doi.org/10.1016/j.jcis.2013.12.019.
[3]. Wahl, M. Marine Epibiosis. I. Fouling and Antifouling: Some Basic Aspects. Mar. Ecol. Prog. Ser. 1989, 58, 175–189. https://doi.org/10.3354/meps058175.
[4]. Jin HC, Tian LM, Zhao J, Ren LQ. "Stealing from Nature" : Bionic Marine antipollution Technology. Chinese Science Bulletin 2022, 67 (1), 8--10.
[5]. Chambers, L. D.; Stokes, K. R.; Walsh, F. C.; Wood, R. J. K. Modern Approaches to Marine Antifouling Coatings. Surf. Coat. Technol. 2006, 201 (6), 3642–3652. https://doi.org/10.1016/j.surfcoat.2006.08.129.
[6]. Yebra, D. M.; Kiil, S.; Dam-Johansen, K. Antifouling Technology—Past, Present and Future Steps towards Efficient and Environmentally Friendly Antifouling Coatings. Prog. Org. Coat. 2004, 50 (2), 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001.
[7]. Magin, C. M.; Cooper, S. P.; Brennan, A. B. Non-Toxic Antifouling Strategies. Mater. Today 2010, 13 (4), 36–44. https://doi.org/10.1016/S1369-7021(10)70058-4.
[8]. Rosenhahn, A.; Schilp, S.; Kreuzer, H. J.; Grunze, M. The Role of "Inert" Surface Chemistry in Marine Biofouling Prevention. Phys. Chem. Chem. Phys. 2010, 12 (17), 4275–4286. https://doi.org/10.1039/C001968M.
[9]. Callow, M. E.; Callow, J. A.; Pickett-Heaps, J. D.; Wetherbee, R. Primary Adhesion of Enteromorpha (Chlorophyta, Ulvales) Propagules: Quantitative Settlement Studies and Video Microscopy1. J. Phycol. 1997, 33 (6), 938–947. https://doi.org/10.1111/j.0022-3646.1997.00938.x.
[10]. Roberts, D.; Rittschof, D.; Holm, E.; Schmidt, A. R. Factors Influencing Initial Larval Settlement: Temporal, Spatial and Surface Molecular Components. J. Exp. Mar. Biol. Ecol. 1991, 150 (2), 203–221. https://doi.org/10.1016/0022-0981(91)90068-8.
[11]. CLARE, A. S.; RITTSCHOF, D.; GERHART, D. J.; MAKI, J. S. Molecular Approaches to Nontoxic Antifouling. Invertebr. Reprod. Dev. 1992, 22 (1–3), 67–76. https://doi.org/10.1080/07924259.1992.9672258.
[12]. Rittschof, D. Research on Practical Environmentally Benign Antifouling Coatings. In Biofouling; Drr, S., Thomason, J. C., Eds.; Wiley-Blackwell: Oxford, UK, 2009; pp 396–409. https://doi.org/10.1002/9781444315462.ch27.
[13]. Epibiosis of Marine Algae and Benthic Invertebrates: Natural Products Chemistry and Other Mechanisms Inhibiting Settlement and Overgrowth | SpringerLink. https://link.springer.com/chapter/10.1007/978-3-642-74560-7_4 (accessed 2022-10-24).
[14]. Dobretsov, S.; Abed, R. M. M.; Teplitski, M. Mini-Review: Inhibition of Biofouling by Marine Microorganisms. Biofouling 2013, 29 (4), 423–441. https://doi.org/10.1080/08927014.2013.776042.
[15]. Huggett, M. J.; Williamson, J. E.; de Nys, R.; Kjelleberg, S.; Steinberg, P. D. Larval Settlement of the Common Australian Sea Urchin Heliocidaris Erythrogramma in Response to Bacteria from the Surface of Coralline Algae. Oecologia 2006, 149 (4), 604–619. https://doi.org/10.1007/s00442-006-0470-8.
[16]. Huang, S.; Hadfield, M. Composition and Density of Bacterial Biofilms Determine Larval Settlement of the Polychaete Hydroides Elegans. Mar. Ecol. Prog. Ser. 2003, 260, 161–172. https://doi.org/10.3354/meps260161.
[17]. Molino, P. J.; Campbell, E.; Wetherbee, R. Development of the Initial Diatom Microfouling Layer on Antifouling and Fouling-Release Surfaces in Temperate and Tropical Australia. Biofouling 2009, 25 (8), 685–694. https://doi.org/10.1080/08927010903089912.
[18]. Staudt, C.; Horn, H.; Hempel, D. C.; Neu, T. R. Volumetric Measurements of Bacterial Cells and Extracellular Polymeric Substance Glycoconjugates in Biofilms. Biotechnol. Bioeng. 2004, 88 (5), 585–592. https://doi.org/10.1002/bit.20241.
[19]. Stoodley, P.; Sauer, K.; Davies, D. G.; Costerton, J. W. Biofilms as Complex Differentiated Communities. Annu. Rev. Microbiol. 2002, 56 (1), 187–209. https://doi.org/10.1146/annurev.micro.56.012302.160705.
[20]. Renner, L. D.; Weibel, D. B. Physicochemical Regulation of Biofilm Formation. MRS Bull. Mater. Res. Soc. 2011, 36 (5), 347–355. https://doi.org/10.1557/mrs.2011.65.
[21]. Melo, L. F.; Bott, T. R. Biofouling in Water Systems. Exp. Therm. Fluid Sci. 1997, 14 (4), 375–381. https://doi.org/10.1016/S0894-1777(96)00139-2.
[22]. Bott, T. R.; Miller, P. C. Mechanisms of Biofilm Formation on Aluminium Tubes. J. Chem. Technol. Biotechnol. Biotechnol. 1983, 33 (3), 177–184. https://doi.org/10.1002/jctb.280330307.
[23]. Bixler, G. D.; Bhushan, B. Biofouling: Lessons from Nature. Philos. Transact. A Math. Phys. Eng. Sci. 2012, 370 (1967), 2381–2417. https://doi.org/10.1098/rsta.2011.0502.
[24]. Bhushan, B.; Jung, Y. C. Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction. Prog. Mater. Sci. 2011, 56 (1), 1–108. https://doi.org/10.1016/j.pmatsci.2010.04.003.
[25]. Webb, H. K.; Crawford, R. J.; Ivanova, E. P. Wettability of Natural Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2014, 210, 58–64. https://doi.org/10.1016/j.cis.2014.01.020.
[26]. Wang, X.; Fu, C.; Zhang, C.; Qiu, Z.; Wang, B. A Comprehensive Review of Wetting Transition Mechanism on the Surfaces of Microstructures from Theory and Testing Methods. Materials 2022, 15 (14), 4747. https://doi.org/10.3390/ma15144747.
[27]. Wenzel, R. N. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Ind. Eng. Chem. 1936, 28 (8), 988–994. https://doi.org/10.1021/ie50320a024.
[28]. Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546. https://doi.org/10.1039/tf9444000546.
[29]. Yan, Y. Y.; Gao, N.; Barthlott, W. Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2011, 169 (2), 80–105. https://doi.org/10.1016/j.cis.2011.08.005.
[30]. Latthe, S. S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf. Molecules 2014, 19 (4), 4256–4283. https://doi.org/10.3390/molecules19044256.
[31]. Eral, H. B.; t Mannetje, D. J. C. M.; Oh, J. M. Contact Angle Hysteresis: A Review of Fundamentals and Applications. Colloid Polym. Sci. 2013, 291 (2), 247–260. https://doi.org/10.1007/s00396-012-2796-6.
[32]. Nosonovsky, M. & Bhushan, B. 2008 Multiscale dissipative mechanisms and hierarchical surfaces. New York, NY: Springer.
[33]. Dhyani, A.; Wang, J.; Halvey, A. K.; Macdonald, B.; Mehta, G.; Tuteja, A. Design and Applications of Surfaces That Control the Accretion of Matter. Science 2021, 373 (6552), eaba5010. https://doi.org/10.1126/science.aba5010.
[34]. Schumacher, J. F.; Carman, M. L.; Estes, T. G.; Feinberg, A. W.; Wilson, L. H.; Callow, M. E.; Callow, J. A.; Finlay, J. A.; Brennan, A. B. Engineered Antifouling Microtopographies – Effect of Feature Size, Geometry, and Roughness on Settlement of Zoospores of the Green Alga Ulva. Biofouling 2007, 23 (1), 55–62. https://doi.org/10.1080/08927010601136957.
[35]. Scardino, A. J.; de Nys, R. Mini Review: Biomimetic Models and Bioinspired Surfaces for Fouling Control. Biofouling 2011, 27 (1), 73–86. https://doi.org/10.1080/08927014.2010.536837.
[36]. Halvey, A. K.; Macdonald, B.; Dhyani, A.; Tuteja, A. Design of Surfaces for Controlling Hard and Soft Fouling. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2019, 377 (2138), 20180266. https://doi.org/10.1098/rsta.2018.0266.
[37]. Chaudhury, M. K. Interfacial Interaction between Low-Energy Surfaces. Mater. Sci. Eng. R Rep. 1996, 16 (3), 97–159. https://doi.org/10.1016/0927-796X(95)00185-9.
[38]. Packham, D. E. Surface Energy, Surface Topography and Adhesion. Int. J. Adhes. Adhes. 2003, 23 (6), 437–448. https://doi.org/10.1016/S0143-7496(03)00068-X.
[39]. Baier, R. E. Surface Behaviour of Biomaterials: The Theta Surface for Biocompatibility. J. Mater. Sci. Mater. Med. 2006, 17 (11), 1057–1062. https://doi.org/10.1007/s10856-006-0444-8.
[40]. Chaudhury, M. K.; Kim, K. H. Shear-Induced Adhesive Failure of a Rigid Slabin Contact with a Thin Confined Film. Eur. Phys. J. E 2007, 23 (2), 175–183. https://doi.org/10.1140/epje/i2007-10171-x.
[41]. Chung, J. Y.; Chaudhury, M. K. Soft and Hard Adhesion. J. Adhes. 2005, 81 (10–11), 1119–1145. https://doi.org/10.1080/00218460500310887.
[42]. Kendall, K. The Adhesion and Surface Energy of Elastic Solids. J. Phys. Appl. Phys. 1971, 4 (8), 1186–1195. https://doi.org/10.1088/0022-3727/4/8/320.
[43]. Ciavarella, M.; Joe, J.; Papangelo, A.; Barber, J. R. The Role of Adhesion in Contact Mechanics. J. R. Soc. Interface 2019, 16 (151), 20180738. https://doi.org/10.1098/rsif.2018.0738.
[44]. Amini, S.; Kolle, S.; Petrone, L.; Ahanotu, O.; Sunny, S.; Sutanto, C. N.; Hoon, S.; Cohen, L.; Weaver, J. C.; Aizenberg, J.; Vogel, N.; Miserez, A. Preventing Mussel Adhesion Using Lubricant-Infused Materials. Science 2017, 357 (6352), 668–673. https://doi.org/10.1126/science.aai8977.
[45]. Chaudhury, M. K.; Finlay, J. A.; Chung, J. Y.; Callow, M. E.; Callow, J. A. The Influence of Elastic Modulus and Thickness on the Release of the Soft-Fouling Green Alga Ulva Linza (Syn. Enteromorpha Linza ) from Poly(Dimethylsiloxane) (PDMS) Model Networks. Biofouling 2005, 21 (1), 41–48. https://doi.org/10.1080/08927010500044377.
[46]. Yin Y. Research on bionic functional surface construction and antifouling mechanism based on harmonic dynamic antifouling strategy. Ph.D. Thesis, jilin university, 2021. https://doi.org/10.27162/d.cnki.gjlin.2021.000077.
[47]. Ai XQ Xie QY. Research progress of Marine antifouling coatings based on natural products. Coating industry 2019, 49 (6), 42, 48. https://doi.org/10.12020/j.issn.0253-4312.2019.6.42.
[48]. Xu, Y.; He, H.; Schulz, S.; Liu, X.; Fusetani, N.; Xiong, H.; Xiao, X.; Qian, P.-Y. Potent Antifouling Compounds Produced by Marine Streptomyces. Bioresour. Technol. 2010, 101 (4), 1331–1336. https://doi.org/10.1016/j.biortech.2009.09.046.
[49]. Clare, A. S. Towards Non Toxic Antifouling. Mar Botechnol 1998.
[50]. Achmad, A.; Kassim, J.; Ghafli, A. U.; Hamdan, H. Mangrove Tannin (Rhizophora Apiculata) Complexes with Copper (II) Ion as an Antifoulant in Antifouling Paint for Fish Net. Adv. Mater. Res. 2014, 1043, 204–208. https://doi.org/10.4028/www.scientific.net/AMR.1043.204.
[51]. Noor Idora, M. S.; Ferry, M.; Wan Nik, W. B.; Jasnizat, S. Evaluation of Tannin from Rhizophora Apiculata as Natural Antifouling Agents in Epoxy Paint for Marine Application. Prog. Org. Coat. 2015, 81, 125–131. https://doi.org/10.1016/j.porgcoat.2014.12.012.
[52]. Liu, H.; Chen, S.-Y.; Guo, J.-Y.; Su, P.; Qiu, Y.-K.; Ke, C.-H.; Feng, D.-Q. Effective Natural Antifouling Compounds from the Plant Nerium Oleander and Testing. Int. Biodeterior. Biodegrad. 2018, 127, 170–177. https://doi.org/10.1016/j.ibiod.2017.11.022.
[53]. Wang, J. Study on Antifouling Mechanism of Coral-like Tentacle Biomimetic Structure. https://doi.org/10.27162/d.cnki.gjlin.2022.000973.
[54]. Moerman, F.; Partington, E. Novel Materials of Construction in the Food Industry. In Handbook of Hygiene Control in the Food Industry; Elsevier, 2016; pp 395–444. https://doi.org/10.1016/B978-0-08-100155-4.00030-3.
[55]. Scholz, I.; Bückins, M.; Dolge, L.; Erlinghagen, T.; Weth, A.; Hischen, F.; Mayer, J.; Hoffmann, S.; Riederer, M.; Riedel, M.; Baumgartner, W. Slippery Surfaces of Pitcher Plants: Nepenthes Wax Crystals Minimize Insect Attachment via Microscopic Surface Roughness. J. Exp. Biol. 2010, 213 (7), 1115–1125. https://doi.org/10.1242/jeb.035618.
[56]. Tuteja, A.; Choi, W.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E. Robust Omniphobic Surfaces. Proc. Natl. Acad. Sci. 2008, 105 (47), 18200–18205. https://doi.org/10.1073/pnas.0804872105.
[57]. Cheng, Y.-T.; Rodak, D. E. Is the Lotus Leaf Superhydrophobic? Appl. Phys. Lett. 2005, 86 (14), 144101. https://doi.org/10.1063/1.1895487.
[58]. Ensikat, H. J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in Perfection: The Outstanding Properties of the Lotus Leaf. Beilstein J. Nanotechnol. 2011, 2, 152–161. https://doi.org/10.3762/bjnano.2.19.
[59]. Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater. 2002, 14 (24), 1857–1860. https://doi.org/10.1002/adma.200290020.
[60]. Darmanin, T.; Guittard, F. Superhydrophobic and Superoleophobic Properties in Nature. Mater. Today 2015, 18 (5), 273–285. https://doi.org/10.1016/j.mattod.2015.01.001.
[61]. Yun, G.-T.; Jung, W.-B.; Oh, M. S.; Jang, G. M.; Baek, J.; Kim, N. I.; Im, S. G.; Jung, H.-T. Springtail-Inspired Superomniphobic Surface with Extreme Pressure Resistance. Sci. Adv. 2018, 4 (8), eaat4978. https://doi.org/10.1126/sciadv.aat4978.
[62]. Helbig, R.; Nickerl, J.; Neinhuis, C.; Werner, C. Smart Skin Patterns Protect Springtails. PLoS ONE 2011, 6 (9), e25105. https://doi.org/10.1371/journal.pone.0025105.
[63]. Yue, Y. Research on Bionic Functional Surface Construction and Antifouling Mechanism Based on Dynamic Antifouling Strategy.
[64]. Zhang, Y. Preparation and Application of Low Surface Energy Anti-Adhesion Coating Containing Silicon. https://doi.org/10.27040/d.cnki.ggzdu.2021.000581.
[65]. Zhang, Y. Research Progress of High-Performance Silicone Marine Antifouling Coatings. J Paint Coat. Ind.-83.
[66]. Ai, X. Research Progress of Natural Product-Based Marine Antifouling Coatings. Paint Coat. Ind.
Cite this article
Hu,J.;Huang,S.;Wang,Y.;Chen,X. (2023). Bio-inspired surfaces for resisting marine fouling. Applied and Computational Engineering,7,583-600.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 3rd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2023), Part II
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Callow, J. A.; Callow, M. E. Trends in the Development of Environmentally Friendly Fouling-Resistant Marine Coatings. Nat. Commun. 2011, 2 (1), 244. https://doi.org/10.1038/ncomms1251.
[2]. Bixler, G. D.; Theiss, A.; Bhushan, B.; Lee, S. C. Anti-Fouling Properties of Microstructured Surfaces Bio-Inspired by Rice Leaves and Butterfly Wings. J. Colloid Interface Sci. 2014, 419, 114–133. https://doi.org/10.1016/j.jcis.2013.12.019.
[3]. Wahl, M. Marine Epibiosis. I. Fouling and Antifouling: Some Basic Aspects. Mar. Ecol. Prog. Ser. 1989, 58, 175–189. https://doi.org/10.3354/meps058175.
[4]. Jin HC, Tian LM, Zhao J, Ren LQ. "Stealing from Nature" : Bionic Marine antipollution Technology. Chinese Science Bulletin 2022, 67 (1), 8--10.
[5]. Chambers, L. D.; Stokes, K. R.; Walsh, F. C.; Wood, R. J. K. Modern Approaches to Marine Antifouling Coatings. Surf. Coat. Technol. 2006, 201 (6), 3642–3652. https://doi.org/10.1016/j.surfcoat.2006.08.129.
[6]. Yebra, D. M.; Kiil, S.; Dam-Johansen, K. Antifouling Technology—Past, Present and Future Steps towards Efficient and Environmentally Friendly Antifouling Coatings. Prog. Org. Coat. 2004, 50 (2), 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001.
[7]. Magin, C. M.; Cooper, S. P.; Brennan, A. B. Non-Toxic Antifouling Strategies. Mater. Today 2010, 13 (4), 36–44. https://doi.org/10.1016/S1369-7021(10)70058-4.
[8]. Rosenhahn, A.; Schilp, S.; Kreuzer, H. J.; Grunze, M. The Role of "Inert" Surface Chemistry in Marine Biofouling Prevention. Phys. Chem. Chem. Phys. 2010, 12 (17), 4275–4286. https://doi.org/10.1039/C001968M.
[9]. Callow, M. E.; Callow, J. A.; Pickett-Heaps, J. D.; Wetherbee, R. Primary Adhesion of Enteromorpha (Chlorophyta, Ulvales) Propagules: Quantitative Settlement Studies and Video Microscopy1. J. Phycol. 1997, 33 (6), 938–947. https://doi.org/10.1111/j.0022-3646.1997.00938.x.
[10]. Roberts, D.; Rittschof, D.; Holm, E.; Schmidt, A. R. Factors Influencing Initial Larval Settlement: Temporal, Spatial and Surface Molecular Components. J. Exp. Mar. Biol. Ecol. 1991, 150 (2), 203–221. https://doi.org/10.1016/0022-0981(91)90068-8.
[11]. CLARE, A. S.; RITTSCHOF, D.; GERHART, D. J.; MAKI, J. S. Molecular Approaches to Nontoxic Antifouling. Invertebr. Reprod. Dev. 1992, 22 (1–3), 67–76. https://doi.org/10.1080/07924259.1992.9672258.
[12]. Rittschof, D. Research on Practical Environmentally Benign Antifouling Coatings. In Biofouling; Drr, S., Thomason, J. C., Eds.; Wiley-Blackwell: Oxford, UK, 2009; pp 396–409. https://doi.org/10.1002/9781444315462.ch27.
[13]. Epibiosis of Marine Algae and Benthic Invertebrates: Natural Products Chemistry and Other Mechanisms Inhibiting Settlement and Overgrowth | SpringerLink. https://link.springer.com/chapter/10.1007/978-3-642-74560-7_4 (accessed 2022-10-24).
[14]. Dobretsov, S.; Abed, R. M. M.; Teplitski, M. Mini-Review: Inhibition of Biofouling by Marine Microorganisms. Biofouling 2013, 29 (4), 423–441. https://doi.org/10.1080/08927014.2013.776042.
[15]. Huggett, M. J.; Williamson, J. E.; de Nys, R.; Kjelleberg, S.; Steinberg, P. D. Larval Settlement of the Common Australian Sea Urchin Heliocidaris Erythrogramma in Response to Bacteria from the Surface of Coralline Algae. Oecologia 2006, 149 (4), 604–619. https://doi.org/10.1007/s00442-006-0470-8.
[16]. Huang, S.; Hadfield, M. Composition and Density of Bacterial Biofilms Determine Larval Settlement of the Polychaete Hydroides Elegans. Mar. Ecol. Prog. Ser. 2003, 260, 161–172. https://doi.org/10.3354/meps260161.
[17]. Molino, P. J.; Campbell, E.; Wetherbee, R. Development of the Initial Diatom Microfouling Layer on Antifouling and Fouling-Release Surfaces in Temperate and Tropical Australia. Biofouling 2009, 25 (8), 685–694. https://doi.org/10.1080/08927010903089912.
[18]. Staudt, C.; Horn, H.; Hempel, D. C.; Neu, T. R. Volumetric Measurements of Bacterial Cells and Extracellular Polymeric Substance Glycoconjugates in Biofilms. Biotechnol. Bioeng. 2004, 88 (5), 585–592. https://doi.org/10.1002/bit.20241.
[19]. Stoodley, P.; Sauer, K.; Davies, D. G.; Costerton, J. W. Biofilms as Complex Differentiated Communities. Annu. Rev. Microbiol. 2002, 56 (1), 187–209. https://doi.org/10.1146/annurev.micro.56.012302.160705.
[20]. Renner, L. D.; Weibel, D. B. Physicochemical Regulation of Biofilm Formation. MRS Bull. Mater. Res. Soc. 2011, 36 (5), 347–355. https://doi.org/10.1557/mrs.2011.65.
[21]. Melo, L. F.; Bott, T. R. Biofouling in Water Systems. Exp. Therm. Fluid Sci. 1997, 14 (4), 375–381. https://doi.org/10.1016/S0894-1777(96)00139-2.
[22]. Bott, T. R.; Miller, P. C. Mechanisms of Biofilm Formation on Aluminium Tubes. J. Chem. Technol. Biotechnol. Biotechnol. 1983, 33 (3), 177–184. https://doi.org/10.1002/jctb.280330307.
[23]. Bixler, G. D.; Bhushan, B. Biofouling: Lessons from Nature. Philos. Transact. A Math. Phys. Eng. Sci. 2012, 370 (1967), 2381–2417. https://doi.org/10.1098/rsta.2011.0502.
[24]. Bhushan, B.; Jung, Y. C. Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction. Prog. Mater. Sci. 2011, 56 (1), 1–108. https://doi.org/10.1016/j.pmatsci.2010.04.003.
[25]. Webb, H. K.; Crawford, R. J.; Ivanova, E. P. Wettability of Natural Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2014, 210, 58–64. https://doi.org/10.1016/j.cis.2014.01.020.
[26]. Wang, X.; Fu, C.; Zhang, C.; Qiu, Z.; Wang, B. A Comprehensive Review of Wetting Transition Mechanism on the Surfaces of Microstructures from Theory and Testing Methods. Materials 2022, 15 (14), 4747. https://doi.org/10.3390/ma15144747.
[27]. Wenzel, R. N. RESISTANCE OF SOLID SURFACES TO WETTING BY WATER. Ind. Eng. Chem. 1936, 28 (8), 988–994. https://doi.org/10.1021/ie50320a024.
[28]. Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 40, 546. https://doi.org/10.1039/tf9444000546.
[29]. Yan, Y. Y.; Gao, N.; Barthlott, W. Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2011, 169 (2), 80–105. https://doi.org/10.1016/j.cis.2011.08.005.
[30]. Latthe, S. S.; Terashima, C.; Nakata, K.; Fujishima, A. Superhydrophobic Surfaces Developed by Mimicking Hierarchical Surface Morphology of Lotus Leaf. Molecules 2014, 19 (4), 4256–4283. https://doi.org/10.3390/molecules19044256.
[31]. Eral, H. B.; t Mannetje, D. J. C. M.; Oh, J. M. Contact Angle Hysteresis: A Review of Fundamentals and Applications. Colloid Polym. Sci. 2013, 291 (2), 247–260. https://doi.org/10.1007/s00396-012-2796-6.
[32]. Nosonovsky, M. & Bhushan, B. 2008 Multiscale dissipative mechanisms and hierarchical surfaces. New York, NY: Springer.
[33]. Dhyani, A.; Wang, J.; Halvey, A. K.; Macdonald, B.; Mehta, G.; Tuteja, A. Design and Applications of Surfaces That Control the Accretion of Matter. Science 2021, 373 (6552), eaba5010. https://doi.org/10.1126/science.aba5010.
[34]. Schumacher, J. F.; Carman, M. L.; Estes, T. G.; Feinberg, A. W.; Wilson, L. H.; Callow, M. E.; Callow, J. A.; Finlay, J. A.; Brennan, A. B. Engineered Antifouling Microtopographies – Effect of Feature Size, Geometry, and Roughness on Settlement of Zoospores of the Green Alga Ulva. Biofouling 2007, 23 (1), 55–62. https://doi.org/10.1080/08927010601136957.
[35]. Scardino, A. J.; de Nys, R. Mini Review: Biomimetic Models and Bioinspired Surfaces for Fouling Control. Biofouling 2011, 27 (1), 73–86. https://doi.org/10.1080/08927014.2010.536837.
[36]. Halvey, A. K.; Macdonald, B.; Dhyani, A.; Tuteja, A. Design of Surfaces for Controlling Hard and Soft Fouling. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2019, 377 (2138), 20180266. https://doi.org/10.1098/rsta.2018.0266.
[37]. Chaudhury, M. K. Interfacial Interaction between Low-Energy Surfaces. Mater. Sci. Eng. R Rep. 1996, 16 (3), 97–159. https://doi.org/10.1016/0927-796X(95)00185-9.
[38]. Packham, D. E. Surface Energy, Surface Topography and Adhesion. Int. J. Adhes. Adhes. 2003, 23 (6), 437–448. https://doi.org/10.1016/S0143-7496(03)00068-X.
[39]. Baier, R. E. Surface Behaviour of Biomaterials: The Theta Surface for Biocompatibility. J. Mater. Sci. Mater. Med. 2006, 17 (11), 1057–1062. https://doi.org/10.1007/s10856-006-0444-8.
[40]. Chaudhury, M. K.; Kim, K. H. Shear-Induced Adhesive Failure of a Rigid Slabin Contact with a Thin Confined Film. Eur. Phys. J. E 2007, 23 (2), 175–183. https://doi.org/10.1140/epje/i2007-10171-x.
[41]. Chung, J. Y.; Chaudhury, M. K. Soft and Hard Adhesion. J. Adhes. 2005, 81 (10–11), 1119–1145. https://doi.org/10.1080/00218460500310887.
[42]. Kendall, K. The Adhesion and Surface Energy of Elastic Solids. J. Phys. Appl. Phys. 1971, 4 (8), 1186–1195. https://doi.org/10.1088/0022-3727/4/8/320.
[43]. Ciavarella, M.; Joe, J.; Papangelo, A.; Barber, J. R. The Role of Adhesion in Contact Mechanics. J. R. Soc. Interface 2019, 16 (151), 20180738. https://doi.org/10.1098/rsif.2018.0738.
[44]. Amini, S.; Kolle, S.; Petrone, L.; Ahanotu, O.; Sunny, S.; Sutanto, C. N.; Hoon, S.; Cohen, L.; Weaver, J. C.; Aizenberg, J.; Vogel, N.; Miserez, A. Preventing Mussel Adhesion Using Lubricant-Infused Materials. Science 2017, 357 (6352), 668–673. https://doi.org/10.1126/science.aai8977.
[45]. Chaudhury, M. K.; Finlay, J. A.; Chung, J. Y.; Callow, M. E.; Callow, J. A. The Influence of Elastic Modulus and Thickness on the Release of the Soft-Fouling Green Alga Ulva Linza (Syn. Enteromorpha Linza ) from Poly(Dimethylsiloxane) (PDMS) Model Networks. Biofouling 2005, 21 (1), 41–48. https://doi.org/10.1080/08927010500044377.
[46]. Yin Y. Research on bionic functional surface construction and antifouling mechanism based on harmonic dynamic antifouling strategy. Ph.D. Thesis, jilin university, 2021. https://doi.org/10.27162/d.cnki.gjlin.2021.000077.
[47]. Ai XQ Xie QY. Research progress of Marine antifouling coatings based on natural products. Coating industry 2019, 49 (6), 42, 48. https://doi.org/10.12020/j.issn.0253-4312.2019.6.42.
[48]. Xu, Y.; He, H.; Schulz, S.; Liu, X.; Fusetani, N.; Xiong, H.; Xiao, X.; Qian, P.-Y. Potent Antifouling Compounds Produced by Marine Streptomyces. Bioresour. Technol. 2010, 101 (4), 1331–1336. https://doi.org/10.1016/j.biortech.2009.09.046.
[49]. Clare, A. S. Towards Non Toxic Antifouling. Mar Botechnol 1998.
[50]. Achmad, A.; Kassim, J.; Ghafli, A. U.; Hamdan, H. Mangrove Tannin (Rhizophora Apiculata) Complexes with Copper (II) Ion as an Antifoulant in Antifouling Paint for Fish Net. Adv. Mater. Res. 2014, 1043, 204–208. https://doi.org/10.4028/www.scientific.net/AMR.1043.204.
[51]. Noor Idora, M. S.; Ferry, M.; Wan Nik, W. B.; Jasnizat, S. Evaluation of Tannin from Rhizophora Apiculata as Natural Antifouling Agents in Epoxy Paint for Marine Application. Prog. Org. Coat. 2015, 81, 125–131. https://doi.org/10.1016/j.porgcoat.2014.12.012.
[52]. Liu, H.; Chen, S.-Y.; Guo, J.-Y.; Su, P.; Qiu, Y.-K.; Ke, C.-H.; Feng, D.-Q. Effective Natural Antifouling Compounds from the Plant Nerium Oleander and Testing. Int. Biodeterior. Biodegrad. 2018, 127, 170–177. https://doi.org/10.1016/j.ibiod.2017.11.022.
[53]. Wang, J. Study on Antifouling Mechanism of Coral-like Tentacle Biomimetic Structure. https://doi.org/10.27162/d.cnki.gjlin.2022.000973.
[54]. Moerman, F.; Partington, E. Novel Materials of Construction in the Food Industry. In Handbook of Hygiene Control in the Food Industry; Elsevier, 2016; pp 395–444. https://doi.org/10.1016/B978-0-08-100155-4.00030-3.
[55]. Scholz, I.; Bückins, M.; Dolge, L.; Erlinghagen, T.; Weth, A.; Hischen, F.; Mayer, J.; Hoffmann, S.; Riederer, M.; Riedel, M.; Baumgartner, W. Slippery Surfaces of Pitcher Plants: Nepenthes Wax Crystals Minimize Insect Attachment via Microscopic Surface Roughness. J. Exp. Biol. 2010, 213 (7), 1115–1125. https://doi.org/10.1242/jeb.035618.
[56]. Tuteja, A.; Choi, W.; Mabry, J. M.; McKinley, G. H.; Cohen, R. E. Robust Omniphobic Surfaces. Proc. Natl. Acad. Sci. 2008, 105 (47), 18200–18205. https://doi.org/10.1073/pnas.0804872105.
[57]. Cheng, Y.-T.; Rodak, D. E. Is the Lotus Leaf Superhydrophobic? Appl. Phys. Lett. 2005, 86 (14), 144101. https://doi.org/10.1063/1.1895487.
[58]. Ensikat, H. J.; Ditsche-Kuru, P.; Neinhuis, C.; Barthlott, W. Superhydrophobicity in Perfection: The Outstanding Properties of the Lotus Leaf. Beilstein J. Nanotechnol. 2011, 2, 152–161. https://doi.org/10.3762/bjnano.2.19.
[59]. Feng, L.; Li, S.; Li, Y.; Li, H.; Zhang, L.; Zhai, J.; Song, Y.; Liu, B.; Jiang, L.; Zhu, D. Super-Hydrophobic Surfaces: From Natural to Artificial. Adv. Mater. 2002, 14 (24), 1857–1860. https://doi.org/10.1002/adma.200290020.
[60]. Darmanin, T.; Guittard, F. Superhydrophobic and Superoleophobic Properties in Nature. Mater. Today 2015, 18 (5), 273–285. https://doi.org/10.1016/j.mattod.2015.01.001.
[61]. Yun, G.-T.; Jung, W.-B.; Oh, M. S.; Jang, G. M.; Baek, J.; Kim, N. I.; Im, S. G.; Jung, H.-T. Springtail-Inspired Superomniphobic Surface with Extreme Pressure Resistance. Sci. Adv. 2018, 4 (8), eaat4978. https://doi.org/10.1126/sciadv.aat4978.
[62]. Helbig, R.; Nickerl, J.; Neinhuis, C.; Werner, C. Smart Skin Patterns Protect Springtails. PLoS ONE 2011, 6 (9), e25105. https://doi.org/10.1371/journal.pone.0025105.
[63]. Yue, Y. Research on Bionic Functional Surface Construction and Antifouling Mechanism Based on Dynamic Antifouling Strategy.
[64]. Zhang, Y. Preparation and Application of Low Surface Energy Anti-Adhesion Coating Containing Silicon. https://doi.org/10.27040/d.cnki.ggzdu.2021.000581.
[65]. Zhang, Y. Research Progress of High-Performance Silicone Marine Antifouling Coatings. J Paint Coat. Ind.-83.
[66]. Ai, X. Research Progress of Natural Product-Based Marine Antifouling Coatings. Paint Coat. Ind.