Application of Halogen-Free EPDM Flame Retardants

Research Article
Open access

Application of Halogen-Free EPDM Flame Retardants

Yiming Li 1*
  • 1 South China University of Technology    
  • *corresponding author 202064271321@mail.scut.edu.cn
Published on 7 November 2023 | https://doi.org/10.54254/2755-2721/23/20230666
ACE Vol.23
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-83558-067-7
ISBN (Online): 978-1-83558-068-4

Abstract

Flame retardant materials have been widely used in different fields because of their unique physical and chemical properties, such as aerospace and chemical products. However, although the traditional halogen-based flame retardant has shown excellent application performance in the actual application process, there are serious environmental pollution problems after its use. In order to solve the environmental problems caused by halogen flame retardants, different types of environmentally friendly flame retardant materials have been developed, such as ethylene propylene diene monomer (EPDM) flame retardant. As a new type of energy saving and environment friendly rubber, the EPDM has excellent heat resistance, aging resistance, corrosion resistance and insulation performance, and thus it has been widely used in all walks of life. To this end, EPDM has been used to develop different types of flame retardant materials. Herein, this research will mainly analyze the application performance of different types of EPDM flame retardants and their flame retardant mechanisms, where the research and application of EDPM flame retarder are mainly described from three aspects: intumescent flame retarder, phosphorous flame retarder and inorganic flame retarder

Keywords:

EPDM rubber, flame retardant, application

Li,Y. (2023). Application of Halogen-Free EPDM Flame Retardants. Applied and Computational Engineering,23,280-286.
Export citation

References

[1]. Chen, C., Zhou, Y., He, W., Gao, C., Chen, X., Guo, J., & Wang, M., 2021, Journal of Applied Polymer Science, 138(13), 50116.

[2]. Li, Y. M., Hu, S. L., & Wang, D. Y., 2020, Composites Communications, 21, 100405.

[3]. Li, Y., Qi, L., Liu, Y., Qiao, J., Wang, M., Liu, X., & Li, S., 2022, Polymers, 14(14), 2876.

[4]. Shen, J., Liang, J., Lin, X., Lin, H., Yu, J., & Wang, S., 2022, Polymers, 14(1), 82.

[5]. Adner, D., Helmy, M., Otto, T., Schellenberg, J., & Schadewald, A., 2019, Fire and Materials, 43(2), 169-174.

[6]. Cheng, J., Niu, S., Zhao, Y., Liu, Y., Kang, M., Guan, Y., & Zhang, F., 2022, Construction and Building Materials, 318, 125998.

[7]. Jiang, L., Zhou, Z., Zhao, F., et al., 2023, Journal of Applied Polymer Science, 140(9), e53567.

[8]. Han, L. X., Zhao, Z. Y., Deng, C., & Wang, Y. Z., 2022, Polymer Degradation and Stability, 201, 109990.

[9]. Ma, H., He, J., Li, X., & Yang, R., 2021, Polymers for Advanced Technologies, 32(6), 2444-2451.

[10]. Valentini, F., Roux, J. C., Lopez-Cuesta, J. M., Fambri, L., Dorigato, A., & Pegoretti, A., 2023, Polymer Degradation and Stability, 207, 110240.

[11]. Wu, K., Wang, X., Xu, Y., & Guo, W., 2020, Polymer Degradation and Stability, 172, 109065.

[12]. Yao, W., Xu, X., Zhou, J., et al., 2022, Polymer Degradation and Stability, 202, 110029.

[13]. George, K., Mohanty, S., Biswal, M., & Nayak, S. K., 2022, Journal of Thermal Analysis and Calorimetry, 1-10.

[14]. Zirnstein, B., Schulze, D., & Schartel, B., 2019, Materials, 12(12), 1932.

[15]. Zirnstein, B., Schulze, D., & Schartel, B., 2019, Thermochimica acta, 673, 92-104.

[16]. Basu, D., Das, A., Wang, D. Y., et al., 2016, RSC advances, 6(31), 26425-26436.

[17]. Chen, J., Huang, W., Jiang, S. B., et al., 2017, Radiation Physics and Chemistry, 130, 400-405.


Cite this article

Li,Y. (2023). Application of Halogen-Free EPDM Flame Retardants. Applied and Computational Engineering,23,280-286.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 2023 International Conference on Functional Materials and Civil Engineering

ISBN:978-1-83558-067-7(Print) / 978-1-83558-068-4(Online)
Editor:Bhupesh Kumar
Conference website: https://www.conffmce.org/
Conference date: 26 August 2023
Series: Applied and Computational Engineering
Volume number: Vol.23
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Chen, C., Zhou, Y., He, W., Gao, C., Chen, X., Guo, J., & Wang, M., 2021, Journal of Applied Polymer Science, 138(13), 50116.

[2]. Li, Y. M., Hu, S. L., & Wang, D. Y., 2020, Composites Communications, 21, 100405.

[3]. Li, Y., Qi, L., Liu, Y., Qiao, J., Wang, M., Liu, X., & Li, S., 2022, Polymers, 14(14), 2876.

[4]. Shen, J., Liang, J., Lin, X., Lin, H., Yu, J., & Wang, S., 2022, Polymers, 14(1), 82.

[5]. Adner, D., Helmy, M., Otto, T., Schellenberg, J., & Schadewald, A., 2019, Fire and Materials, 43(2), 169-174.

[6]. Cheng, J., Niu, S., Zhao, Y., Liu, Y., Kang, M., Guan, Y., & Zhang, F., 2022, Construction and Building Materials, 318, 125998.

[7]. Jiang, L., Zhou, Z., Zhao, F., et al., 2023, Journal of Applied Polymer Science, 140(9), e53567.

[8]. Han, L. X., Zhao, Z. Y., Deng, C., & Wang, Y. Z., 2022, Polymer Degradation and Stability, 201, 109990.

[9]. Ma, H., He, J., Li, X., & Yang, R., 2021, Polymers for Advanced Technologies, 32(6), 2444-2451.

[10]. Valentini, F., Roux, J. C., Lopez-Cuesta, J. M., Fambri, L., Dorigato, A., & Pegoretti, A., 2023, Polymer Degradation and Stability, 207, 110240.

[11]. Wu, K., Wang, X., Xu, Y., & Guo, W., 2020, Polymer Degradation and Stability, 172, 109065.

[12]. Yao, W., Xu, X., Zhou, J., et al., 2022, Polymer Degradation and Stability, 202, 110029.

[13]. George, K., Mohanty, S., Biswal, M., & Nayak, S. K., 2022, Journal of Thermal Analysis and Calorimetry, 1-10.

[14]. Zirnstein, B., Schulze, D., & Schartel, B., 2019, Materials, 12(12), 1932.

[15]. Zirnstein, B., Schulze, D., & Schartel, B., 2019, Thermochimica acta, 673, 92-104.

[16]. Basu, D., Das, A., Wang, D. Y., et al., 2016, RSC advances, 6(31), 26425-26436.

[17]. Chen, J., Huang, W., Jiang, S. B., et al., 2017, Radiation Physics and Chemistry, 130, 400-405.