The Challenges of Using Block Copolymers for Organic Solar Cells and Identifying the Most Suitable Approaches

Research Article
Open access

The Challenges of Using Block Copolymers for Organic Solar Cells and Identifying the Most Suitable Approaches

Zefeng Huang 1*
  • 1 University of Warwick    
  • *corresponding author U2096611@live.warwick.ac.uk
Published on 7 November 2023 | https://doi.org/10.54254/2755-2721/24/20230709
ACE Vol.24
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-83558-069-1
ISBN (Online): 978-1-83558-070-7

Abstract

For organic solar cells, a variety of materials are employed, including homopolymer donors and D-A copolymer donors. Organic solar cells are made from Pb (or Sn) halide perovskites, although they have some flaws. A mineral that resembles salt and is present in Pb perovskites quickly dissolves in moisture or water. It may have an impact on your health. The instability of Sn halide perovskites prevents them from becoming suitable. Perovskites are extremely vulnerable to oxidation on their own. Therefore, organic solar cells require a new substance. The usage of block copolymers as a component in organic solar cells is the main topic of this article. The quantum efficiency of organic solar cells will increase by modifying the block copolymer's shape and choosing the right material.

Keywords:

block copolymers, organic solar cells, use of organic solar cell

Huang,Z. (2023). The Challenges of Using Block Copolymers for Organic Solar Cells and Identifying the Most Suitable Approaches. Applied and Computational Engineering,24,204-209.
Export citation

References

[1]. J. Conti, P. Holmberg, J. Diefenderfer, A. LaRose, J. T. Turnure and L. Westfall, International Energy Outlook 2016 With Projections to 2040 (Technical Report) | OSTI.GOV, 2016: Abstract.

[2]. S. B. Darling, Energy & Environmental Science, 2009, 2, 1266–1273.

[3]. Dou, L., You, J., Hong, Z., Xu, Z., Li, G., Street, R.A. and Yang, Y. (2013), 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Adv. Mater., 25: 6642-6671.

[4]. Botiz and S. B. Darling, Optoelectronics using block copolymers, Materials Today, 2010,42–51.

[5]. Topham, Paul D., et al. “Block Copolymer Strategies for Solar Cell Technology.” Journal of Polymer Science Part B: Polymer Physics, vol. 49, no. 16, 28 June 2011, pp. 1131–1156, https://doi.org/10.1002/polb.22302. Accessed 8 Jan. 2020.

[6]. N. S. Lewis and D. G. Nocera, Proceedings of the National Academy of Sciences, Powering the planet: Chemical challenges in solar energy utilization, 2006,15729–15735.

[7]. Y.-C. Tseng and S. B. Darling, Block Copolymer Nanostructures for Technology, Polymers, 2010, 470–489.

[8]. C. W. Tang, Two‐layer organic photovoltaic cell, Applied Physics Letters, 1986, 48, 183–185.

[9]. Botiz and S. B. Darling, Optoelectronics using block copolymers, Materials Today, 2010,42–51.

[10]. S. B. Darling, Energy & Environmental Science, 2009, 2, 1266–1273.

[11]. H. Guo, L. Chen, B. Huang, Q. Xie, S. Ding and Y. Chen, Double acceptor block-based copolymers for efficient organic solar cells: side-chain and π-bridge engineered high open-circuit voltage and small driving force, Polymer Chemistry, 2019, 10, 6227–6235.

[12]. R. Zaier, M. P. De La Cruz, F. L. De La Puente and S. Ayachi, Optoelectronic properties of cyclopentadithiophene-based donor–acceptor copolymers as donors in bulk heterojunction organic solar cells: A theoretical study, Journal of Physics and Chemistry of Solids, 2020, 145, 109532.

[13]. Y. An, X. Liao, L. Chen, Q. Xie, M. Zhang, B. Huang, Z. Liao, H. Guo, A. Jazib, J. Han, F. Liu, A. K. Y. Jen and Y. Chen, A1-A2 Type Wide Bandgap Polymers for High-Performance Polymer Solar Cells: Energy Loss and Morphology, Solar RRL, 2018, 3, 1800291.

[14]. Hui Guo, Bin Huang, Lifu Zhang, Lie Chen, Qian Xie, Zhihui Liao, Shaorong Huang, and Yiwang Chen, Double Acceptor Block-Containing Copolymers with Deep HOMO Levels for Organic Solar Cells: Adjusting Carboxylate Substituent Position for Planarity, ACS Applied Materials & Interfaces 2019 11 (17), 15853-15860

[15]. Y. Liang, H. Wang, S. Yuan, Y. Lee, L. Gan and L. Yu, Conjugated block copolymers and co-oligomers: from supramolecular assembly to molecular electronics, Journal of Materials Chemistry, 2007, 17, 2183.

[16]. S. Barrau, T. Heiser, F. Richard, C. Brochon, C. Ngov, K. van de Wetering, G. Hadziioannou, D. V. Anokhin and D. A. Ivanov, Self-Assembling of Novel Fullerene-Grafted Donor–Acceptor Rod−Coil Block Copolymers, Macromolecules, 2008, 41, 2701–2710.

[17]. D. Schlüter, The tenth anniversary of Suzuki Polycondensation (SPC), Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39, 1533–1556.

[18]. Carsten, F. He, H. J. Son, T. Xu and L. Yu, Stille Polycondensation for Synthesis of Functional Materials, Chemical Reviews, 2011, 111, 1493–1528.

[19]. X. L. Chen and S. A. Jenekhe, Block Conjugated Copolymers:  Toward Quantum-Well Nanostructures for Exploring Spatial Confinement Effects on Electronic, Optoelectronic, and Optical Phenomena, Macromolecules, 1996, 29, 6189–6192.

[20]. G. Tu, H. Li, M. Forster, R. Heiderhoff, L. J. Balk and U. Scherf, Conjugated Triblock Copolymers Containing Both Electron-Donor and Electron-Acceptor Blocks, Macromolecules, 2006, 39, 4327–4331.

[21]. R. C. Mulherin, S. Jung, S. Huettner, K. Johnson, P. Kohn, M. Sommer, S. Allard, U. Scherf and N. C. Greenham, Ternary Photovoltaic Blends Incorporating an All-Conjugated Donor–Acceptor Diblock Copolymer, Nano Letters, 2011, 11, 4846–4851.

[22]. V. D. Mitchell, W. W. H. Wong, M. Thelakkat and D. J. Jones, The synthesis and purification of amphiphilic conjugated donor–acceptor block copolymers, Polymer Journal, 2016, 49, 155–161.

[23]. K. Sivula, Z. T. Ball, N. Watanabe and J. M. J. Fréchet, Amphiphilic Diblock Copolymer Compatibilizers and Their Effect on the Morphology and Performance of Polythiophene:Fullerene Solar Cells, Advanced Materials, 2006, 18, 206–210.

[24]. M. Sommer, H. Komber, S. Huettner, R. Mulherin, P. Kohn, N. C. Greenham and W. T. S. Huck, Synthesis, Purification, and Characterization of Well-Defined All-Conjugated Diblock Copolymers PF8TBT-b-P3HT, Macromolecules, 2012, 45, 4142–4151.

[25]. S. Rajaram, P. B. Armstrong, B. J. Kim and J. M. J. Fréchet, Effect of Addition of a Diblock Copolymer on Blend Morphology and Performance of Poly(3-hexylthiophene): Perylene Diimide Solar Cells, Chemistry of Materials, 2009, 21, 1775–1777.

[26]. H.-Y. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette and Y. Yang, Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene, Nature Nanotechnology, 2008, 3, 543–547.

[27]. D. E. Fogg, L. H. Radzilowski, B. O. Dabbousi, R. R. Schrock, E. L. Thomas and M. G. Bawendi, Fabrication of Quantum Dot-Polymer Composites:  Semiconductor Nanoclusters in Dual-Function Polymer Matrices with Electron-Transporting and Cluster-Passivating Properties, Macromolecules, 1997, 30, 8433–8439.

[28]. M. R. Bockstaller, Y. Lapetnikov, S. Margel and E. L. Thomas, Size-Selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Block Copolymer/Particle Mixtures, Journal of the American Chemical Society, 2003, 125, 5276–5277.

[29]. J. A. Gratt and R. E. Cohen, The role of ordered block copolymer morphology in the performance of organic/inorganic photovoltaic devices, Journal of Applied Polymer Science, 2004, 91, 3362–3368.

[30]. B. Li, Q. Zhang, S. Li, X. Yang, F. Yang, Y. Kong, Y. Li, Z. Wu, W. Zhang, Q. Zhao, Y. Zhang, H. Young Woo, J. Yuan and W. Ma, Block copolymer compatibilizer for efficient and stable non-fullerene organic solar cells, Chemical Engineering Journal, 2022, 438, 135543.

[31]. Zhao, Q., Hazarika, A., Chen, X. et al. High-efficiency perovskite quantum dot solar cells with charge-separating heterostructure. Nat Commun 10, 2842 (2019).

[32]. M. C. Scharber and N. S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells, Progress in Polymer Science, 2013, 38, 1929–1940.

[33]. P. K. Watkins, A. B. Walker and G. L. B. Verschoor, Dynamical Monte Carlo Modelling of Organic Solar Cells:  The Dependence of Internal Quantum Efficiency on Morphology, Nano Letters, 2005, 5, 1814–1818.

[34]. Han, TH., Lee, JW., Choi, C. et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat Commun 10, 520 (2019).

[35]. W.-C. Yen, Y.-H. Lee, J.-F. Lin, C.-A. Dai, U-Ser. Jeng and W.-F. Su, Effect of TiO2 Nanoparticles on Self-Assembly Behaviors and Optical and Photovoltaic Properties of the P3HT-b-P2VP Block Copolymer, Langmuir, 2010, 27, 109–115.

[36]. Chiang, CH., Wu, CG. Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nature Photon 10, 196–200 (2016). https://doi.org/10.1038/nphoton.2016.3

[37]. Jean-Sebastien Benas, Fang-Cheng Liang, Wei-Cheng Chen, Chung-Wei Hung, Jung-Yao Chen, Ye Zhou, Su-Ting Han, Redouane Borsali, Chi-Ching Kuo, Lewis adduct approach for self-assembled block copolymer perovskite quantum dots composite toward optoelectronic application: Challenges and prospects, Chemical Engineering Journal, 431, Part 4, 2022


Cite this article

Huang,Z. (2023). The Challenges of Using Block Copolymers for Organic Solar Cells and Identifying the Most Suitable Approaches. Applied and Computational Engineering,24,204-209.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 2023 International Conference on Functional Materials and Civil Engineering

ISBN:978-1-83558-069-1(Print) / 978-1-83558-070-7(Online)
Editor:Bhupesh Kumar
Conference website: https://www.conffmce.org/
Conference date: 26 August 2023
Series: Applied and Computational Engineering
Volume number: Vol.24
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. J. Conti, P. Holmberg, J. Diefenderfer, A. LaRose, J. T. Turnure and L. Westfall, International Energy Outlook 2016 With Projections to 2040 (Technical Report) | OSTI.GOV, 2016: Abstract.

[2]. S. B. Darling, Energy & Environmental Science, 2009, 2, 1266–1273.

[3]. Dou, L., You, J., Hong, Z., Xu, Z., Li, G., Street, R.A. and Yang, Y. (2013), 25th Anniversary Article: A Decade of Organic/Polymeric Photovoltaic Research. Adv. Mater., 25: 6642-6671.

[4]. Botiz and S. B. Darling, Optoelectronics using block copolymers, Materials Today, 2010,42–51.

[5]. Topham, Paul D., et al. “Block Copolymer Strategies for Solar Cell Technology.” Journal of Polymer Science Part B: Polymer Physics, vol. 49, no. 16, 28 June 2011, pp. 1131–1156, https://doi.org/10.1002/polb.22302. Accessed 8 Jan. 2020.

[6]. N. S. Lewis and D. G. Nocera, Proceedings of the National Academy of Sciences, Powering the planet: Chemical challenges in solar energy utilization, 2006,15729–15735.

[7]. Y.-C. Tseng and S. B. Darling, Block Copolymer Nanostructures for Technology, Polymers, 2010, 470–489.

[8]. C. W. Tang, Two‐layer organic photovoltaic cell, Applied Physics Letters, 1986, 48, 183–185.

[9]. Botiz and S. B. Darling, Optoelectronics using block copolymers, Materials Today, 2010,42–51.

[10]. S. B. Darling, Energy & Environmental Science, 2009, 2, 1266–1273.

[11]. H. Guo, L. Chen, B. Huang, Q. Xie, S. Ding and Y. Chen, Double acceptor block-based copolymers for efficient organic solar cells: side-chain and π-bridge engineered high open-circuit voltage and small driving force, Polymer Chemistry, 2019, 10, 6227–6235.

[12]. R. Zaier, M. P. De La Cruz, F. L. De La Puente and S. Ayachi, Optoelectronic properties of cyclopentadithiophene-based donor–acceptor copolymers as donors in bulk heterojunction organic solar cells: A theoretical study, Journal of Physics and Chemistry of Solids, 2020, 145, 109532.

[13]. Y. An, X. Liao, L. Chen, Q. Xie, M. Zhang, B. Huang, Z. Liao, H. Guo, A. Jazib, J. Han, F. Liu, A. K. Y. Jen and Y. Chen, A1-A2 Type Wide Bandgap Polymers for High-Performance Polymer Solar Cells: Energy Loss and Morphology, Solar RRL, 2018, 3, 1800291.

[14]. Hui Guo, Bin Huang, Lifu Zhang, Lie Chen, Qian Xie, Zhihui Liao, Shaorong Huang, and Yiwang Chen, Double Acceptor Block-Containing Copolymers with Deep HOMO Levels for Organic Solar Cells: Adjusting Carboxylate Substituent Position for Planarity, ACS Applied Materials & Interfaces 2019 11 (17), 15853-15860

[15]. Y. Liang, H. Wang, S. Yuan, Y. Lee, L. Gan and L. Yu, Conjugated block copolymers and co-oligomers: from supramolecular assembly to molecular electronics, Journal of Materials Chemistry, 2007, 17, 2183.

[16]. S. Barrau, T. Heiser, F. Richard, C. Brochon, C. Ngov, K. van de Wetering, G. Hadziioannou, D. V. Anokhin and D. A. Ivanov, Self-Assembling of Novel Fullerene-Grafted Donor–Acceptor Rod−Coil Block Copolymers, Macromolecules, 2008, 41, 2701–2710.

[17]. D. Schlüter, The tenth anniversary of Suzuki Polycondensation (SPC), Journal of Polymer Science Part A: Polymer Chemistry, 2001, 39, 1533–1556.

[18]. Carsten, F. He, H. J. Son, T. Xu and L. Yu, Stille Polycondensation for Synthesis of Functional Materials, Chemical Reviews, 2011, 111, 1493–1528.

[19]. X. L. Chen and S. A. Jenekhe, Block Conjugated Copolymers:  Toward Quantum-Well Nanostructures for Exploring Spatial Confinement Effects on Electronic, Optoelectronic, and Optical Phenomena, Macromolecules, 1996, 29, 6189–6192.

[20]. G. Tu, H. Li, M. Forster, R. Heiderhoff, L. J. Balk and U. Scherf, Conjugated Triblock Copolymers Containing Both Electron-Donor and Electron-Acceptor Blocks, Macromolecules, 2006, 39, 4327–4331.

[21]. R. C. Mulherin, S. Jung, S. Huettner, K. Johnson, P. Kohn, M. Sommer, S. Allard, U. Scherf and N. C. Greenham, Ternary Photovoltaic Blends Incorporating an All-Conjugated Donor–Acceptor Diblock Copolymer, Nano Letters, 2011, 11, 4846–4851.

[22]. V. D. Mitchell, W. W. H. Wong, M. Thelakkat and D. J. Jones, The synthesis and purification of amphiphilic conjugated donor–acceptor block copolymers, Polymer Journal, 2016, 49, 155–161.

[23]. K. Sivula, Z. T. Ball, N. Watanabe and J. M. J. Fréchet, Amphiphilic Diblock Copolymer Compatibilizers and Their Effect on the Morphology and Performance of Polythiophene:Fullerene Solar Cells, Advanced Materials, 2006, 18, 206–210.

[24]. M. Sommer, H. Komber, S. Huettner, R. Mulherin, P. Kohn, N. C. Greenham and W. T. S. Huck, Synthesis, Purification, and Characterization of Well-Defined All-Conjugated Diblock Copolymers PF8TBT-b-P3HT, Macromolecules, 2012, 45, 4142–4151.

[25]. S. Rajaram, P. B. Armstrong, B. J. Kim and J. M. J. Fréchet, Effect of Addition of a Diblock Copolymer on Blend Morphology and Performance of Poly(3-hexylthiophene): Perylene Diimide Solar Cells, Chemistry of Materials, 2009, 21, 1775–1777.

[26]. H.-Y. Chen, M. K. F. Lo, G. Yang, H. G. Monbouquette and Y. Yang, Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene, Nature Nanotechnology, 2008, 3, 543–547.

[27]. D. E. Fogg, L. H. Radzilowski, B. O. Dabbousi, R. R. Schrock, E. L. Thomas and M. G. Bawendi, Fabrication of Quantum Dot-Polymer Composites:  Semiconductor Nanoclusters in Dual-Function Polymer Matrices with Electron-Transporting and Cluster-Passivating Properties, Macromolecules, 1997, 30, 8433–8439.

[28]. M. R. Bockstaller, Y. Lapetnikov, S. Margel and E. L. Thomas, Size-Selective Organization of Enthalpic Compatibilized Nanocrystals in Ternary Block Copolymer/Particle Mixtures, Journal of the American Chemical Society, 2003, 125, 5276–5277.

[29]. J. A. Gratt and R. E. Cohen, The role of ordered block copolymer morphology in the performance of organic/inorganic photovoltaic devices, Journal of Applied Polymer Science, 2004, 91, 3362–3368.

[30]. B. Li, Q. Zhang, S. Li, X. Yang, F. Yang, Y. Kong, Y. Li, Z. Wu, W. Zhang, Q. Zhao, Y. Zhang, H. Young Woo, J. Yuan and W. Ma, Block copolymer compatibilizer for efficient and stable non-fullerene organic solar cells, Chemical Engineering Journal, 2022, 438, 135543.

[31]. Zhao, Q., Hazarika, A., Chen, X. et al. High-efficiency perovskite quantum dot solar cells with charge-separating heterostructure. Nat Commun 10, 2842 (2019).

[32]. M. C. Scharber and N. S. Sariciftci, Efficiency of bulk-heterojunction organic solar cells, Progress in Polymer Science, 2013, 38, 1929–1940.

[33]. P. K. Watkins, A. B. Walker and G. L. B. Verschoor, Dynamical Monte Carlo Modelling of Organic Solar Cells:  The Dependence of Internal Quantum Efficiency on Morphology, Nano Letters, 2005, 5, 1814–1818.

[34]. Han, TH., Lee, JW., Choi, C. et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat Commun 10, 520 (2019).

[35]. W.-C. Yen, Y.-H. Lee, J.-F. Lin, C.-A. Dai, U-Ser. Jeng and W.-F. Su, Effect of TiO2 Nanoparticles on Self-Assembly Behaviors and Optical and Photovoltaic Properties of the P3HT-b-P2VP Block Copolymer, Langmuir, 2010, 27, 109–115.

[36]. Chiang, CH., Wu, CG. Bulk heterojunction perovskite–PCBM solar cells with high fill factor. Nature Photon 10, 196–200 (2016). https://doi.org/10.1038/nphoton.2016.3

[37]. Jean-Sebastien Benas, Fang-Cheng Liang, Wei-Cheng Chen, Chung-Wei Hung, Jung-Yao Chen, Ye Zhou, Su-Ting Han, Redouane Borsali, Chi-Ching Kuo, Lewis adduct approach for self-assembled block copolymer perovskite quantum dots composite toward optoelectronic application: Challenges and prospects, Chemical Engineering Journal, 431, Part 4, 2022