References
[1]. “Chahal et al. - 2019 - Business Analytics Concept and Applications.pdf.”
[2]. M. Wedel and P. K. Kannan, “Marketing Analytics for Data-Rich Environments,” J. Mark., vol. 80, no. 6, pp. 97–121, Nov. 2016, doi: 10.1509/jm.15.0413.
[3]. D. Delen and S. Ram, “Research challenges and opportunities in business analytics,” J. Bus. Anal., vol. 1, no. 1, pp. 2–12, Jan. 2018, doi: 10.1080/2573234X.2018.1507324.
[4]. R. Ramanathan, Y. Duan, G. Cao, and E. Philpott, “Diffusion and Impact of Business Analytics: A Conceptual Framework,” vol. 6, no. 9, p. 6, 2012.
[5]. atory Findings from Select Cases,” vol. 2, no. 2, p. 13, 2014.
[6]. Y. Liu, H. Han, and J. E. DeBello, “The Challenges of Business Analytics: Successes and Failures,” p. 10, 2018.
[7]. A. Alharthi, V. Krotov, and M. Bowman, “Addressing barriers to big data,” Bus. Horiz., vol. 60, no. 3, pp. 285–292, May 2017, doi: 10.1016/j.bushor.2017.01.002.
[8]. G. V. Post and A. Kagan, “Information Security Tradeoffs: The User Perspective,” EDPACS, vol. 34, no. 3, pp. 1–10, Sep. 2006, doi: 10.1201/1079.07366981/46248.34.3.20060901/94536.1.
[9]. R. Bose, “Advanced analytics: opportunities and challenges,” Ind. Manag. Data Syst., vol. 109, no. 2, pp. 155–172, Mar. 2009, doi: 10.1108/02635570910930073.
[10]. F. Kache and S. Seuring, “Challenges and opportunities of digital information at the intersection of Big Data An-alytics and supply chain management,” Int. J. Oper. Prod. Manag., vol. 37, no. 1, pp. 10–36, Jan. 2017, doi: 10.1108/IJOPM-02-2015-0078.
[11]. R. G. Richey, T. R. Morgan, K. Lindsey-Hall, and F. G. Adams, “A global exploration of Big Data in the supply chain,” Int. J. Phys. Distrib. Logist. Manag., vol. 46, no. 8, pp. 710–739, Sep. 2016, doi: 10.1108/IJPDLM-05-2016-0134.
[12]. B. Roßmann, A. Canzaniello, H. von der Gracht, and E. Hartmann, “The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study,” Technol. Forecast. Soc. Change, vol. 130, pp. 135–149, May 2018, doi: 10.1016/j.techfore.2017.10.005.
[13]. T. T. Herden, B. Nitsche, and B. Gerlach, “Overcoming Barriers in Supply Chain Analytics—Investigating Measures in LSCM Organizations,” Logistics, vol. 4, no. 1, p. 5, Feb. 2020, doi: 10.3390/logistics4010005.
[14]. Md. A. Moktadir, S. M. Ali, S. K. Paul, and N. Shukla, “Barriers to big data analytics in manufacturing supply chains: A case study from Bangladesh,” Comput. Ind. Eng., vol. 128, pp. 1063–1075, Feb. 2019, doi: 10.1016/j.cie.2018.04.013.
[15]. V. Fernandez and E. Gallardo-Gallardo, “Tackling the HR digitalization challenge: key factors and barriers to HR analytics adoption,” Compet. Rev. Int. Bus. J., vol. 31, no. 1, pp. 162–187, Jan. 2021, doi: 10.1108/CR-12-2019-0163.
[16]. E. Brynjolfsson, “The productivity paradox of information technology,” Commun. ACM, vol. 36, no. 12, pp. 66–77, Dec. 1993, doi: 10.1145/163298.163309.
[17]. I. Malaka and I. Brown, “Challenges to the Organisational Adoption of Big Data Analytics: A Case Study in the South African Telecommunications Industry,” in Proceedings of the 2015 Annual Research Conference on South Af-rican Institute of Computer Scientists and Information Technologists - SAICSIT ’15, Stellenbosch, South Africa, 2015, pp. 1–9. doi: 10.1145/2815782.2815793.
[18]. L. Bassi, “Raging Debates in HR Analytics,” p. 5, 2011.
[19]. S. Maity, “Identifying opportunities for artificial intelligence in the evolution of training and development prac-tices,” p. 13, Mar. 2019.
[20]. J. Paschen, M. Wilson, and J. J. Ferreira, “Collaborative intelligence: How human and artificial intelligence create value along the B2B sales funnel,” Bus. Horiz., vol. 63, no. 3, pp. 403–414, May 2020, doi: 10.1016/j.bushor.2020.01.003.
[21]. T. Schoenherr and C. Speier-Pero, “Data Science, Predictive Analytics, and Big Data in Supply Chain Manage-ment: Current State and Future Potential,” J. Bus. Logist., vol. 36, no. 1, pp. 120–132, Mar. 2015, doi: 10.1111/jbl.12082.
[22]. S. Zhu, J. Song, B. T. Hazen, K. Lee, and C. Cegielski, “How supply chain analytics enables operational supply chain transparency: An organizational information processing theory perspective,” Int. J. Phys. Distrib. Logist. Manag., vol. 48, no. 1, pp. 47–68, Feb. 2018, doi: 10.1108/IJPDLM-11-2017-0341.
[23]. M. P. V. de Oliveira, K. McCormack, and P. Trkman, “Business analytics in supply chains – The contingent effect of business process maturity,” Expert Syst. Appl., vol. 39, no. 5, pp. 5488–5498, Apr. 2012, doi: 10.1016/j.eswa.2011.11.073.
[24]. W. L. Pomeroy, “Academic Analytics in Higher Education: Barriers to Adoption,” p. 205, 2014.
[25]. V. Grover, R. H. L. Chiang, T.-P. Liang, and D. Zhang, “Creating Strategic Business Value from Big Data Ana-lytics: A Research Framework,” J. Manag. Inf. Syst., vol. 35, no. 2, pp. 388–423, Apr. 2018, doi: 10.1080/07421222.2018.1451951.
[26]. S. Croom, N. Vidal, W. Spetic, D. Marshall, and L. McCarthy, “Impact of social sustainability orientation and supply chain practices on operational performance,” Int. J. Oper. Prod. Manag., vol. 38, no. 12, pp. 2344–2366, Oct. 2018, doi: 10.1108/IJOPM-03-2017-0180.
[27]. E. F. Amissah, E. Gamor, M. N. Deri, and A. Amissah, “Factors influencing employee job satisfaction in Ghana’s hotel industry,” J. Hum. Resour. Hosp. Tour., vol. 15, no. 2, pp. 166–183, Apr. 2016, doi: 10.1080/15332845.2016.1084858.
[28]. S. L. Dustin and A. R. Belasen, “The Impact of Negative Compensation Changes on Individual Sales Performance,” J. Pers. Sell. Sales Manag., vol. 33, no. 4, pp. 403–417, Dec. 2013, doi: 10.2753/PSS0885-3134330404.
[29]. J. Bichsel, “Analytics in Higher Education: Benefits, Barriers, Progress, and Recommendations,” p. 31, 2012.
[30]. S. Ransbotham, D. Kiron, and P. K. Prentice, “Beyond the Hype: The Hard Work Behind Analytics Success,” p. 18, 2016.
[31]. P. Mikalef, M. Boura, G. Lekakos, and J. Krogstie, “Big Data Analytics Capabilities and Innovation: The Medi-ating Role of Dynamic Capabilities and Moderating Effect of the Environment,” Br. J. Manag., vol. 30, no. 2, pp. 272–298, Apr. 2019, doi: 10.1111/1467-8551.12343.
[32]. P. P. Tallon, “Corporate Governance of Big Data: Perspectives on Value, Risk, and Cost,” Computer, vol. 46, no. 6, pp. 32–38, Jun. 2013, doi: 10.1109/MC.2013.155.
[33]. A. Lauterbach, “Artificial intelligence and policy: quo vadis?,” Digit. Policy Regul. Gov., vol. 21, no. 3, pp. 238–263, May 2019, doi: 10.1108/DPRG-09-2018-0054.
Cite this article
Lian,Y. (2023). Research on Barriers to Implementing Business Analytics in Organizations. Advances in Economics, Management and Political Sciences,16,275-282.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 2nd International Conference on Business and Policy Studies
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. “Chahal et al. - 2019 - Business Analytics Concept and Applications.pdf.”
[2]. M. Wedel and P. K. Kannan, “Marketing Analytics for Data-Rich Environments,” J. Mark., vol. 80, no. 6, pp. 97–121, Nov. 2016, doi: 10.1509/jm.15.0413.
[3]. D. Delen and S. Ram, “Research challenges and opportunities in business analytics,” J. Bus. Anal., vol. 1, no. 1, pp. 2–12, Jan. 2018, doi: 10.1080/2573234X.2018.1507324.
[4]. R. Ramanathan, Y. Duan, G. Cao, and E. Philpott, “Diffusion and Impact of Business Analytics: A Conceptual Framework,” vol. 6, no. 9, p. 6, 2012.
[5]. atory Findings from Select Cases,” vol. 2, no. 2, p. 13, 2014.
[6]. Y. Liu, H. Han, and J. E. DeBello, “The Challenges of Business Analytics: Successes and Failures,” p. 10, 2018.
[7]. A. Alharthi, V. Krotov, and M. Bowman, “Addressing barriers to big data,” Bus. Horiz., vol. 60, no. 3, pp. 285–292, May 2017, doi: 10.1016/j.bushor.2017.01.002.
[8]. G. V. Post and A. Kagan, “Information Security Tradeoffs: The User Perspective,” EDPACS, vol. 34, no. 3, pp. 1–10, Sep. 2006, doi: 10.1201/1079.07366981/46248.34.3.20060901/94536.1.
[9]. R. Bose, “Advanced analytics: opportunities and challenges,” Ind. Manag. Data Syst., vol. 109, no. 2, pp. 155–172, Mar. 2009, doi: 10.1108/02635570910930073.
[10]. F. Kache and S. Seuring, “Challenges and opportunities of digital information at the intersection of Big Data An-alytics and supply chain management,” Int. J. Oper. Prod. Manag., vol. 37, no. 1, pp. 10–36, Jan. 2017, doi: 10.1108/IJOPM-02-2015-0078.
[11]. R. G. Richey, T. R. Morgan, K. Lindsey-Hall, and F. G. Adams, “A global exploration of Big Data in the supply chain,” Int. J. Phys. Distrib. Logist. Manag., vol. 46, no. 8, pp. 710–739, Sep. 2016, doi: 10.1108/IJPDLM-05-2016-0134.
[12]. B. Roßmann, A. Canzaniello, H. von der Gracht, and E. Hartmann, “The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study,” Technol. Forecast. Soc. Change, vol. 130, pp. 135–149, May 2018, doi: 10.1016/j.techfore.2017.10.005.
[13]. T. T. Herden, B. Nitsche, and B. Gerlach, “Overcoming Barriers in Supply Chain Analytics—Investigating Measures in LSCM Organizations,” Logistics, vol. 4, no. 1, p. 5, Feb. 2020, doi: 10.3390/logistics4010005.
[14]. Md. A. Moktadir, S. M. Ali, S. K. Paul, and N. Shukla, “Barriers to big data analytics in manufacturing supply chains: A case study from Bangladesh,” Comput. Ind. Eng., vol. 128, pp. 1063–1075, Feb. 2019, doi: 10.1016/j.cie.2018.04.013.
[15]. V. Fernandez and E. Gallardo-Gallardo, “Tackling the HR digitalization challenge: key factors and barriers to HR analytics adoption,” Compet. Rev. Int. Bus. J., vol. 31, no. 1, pp. 162–187, Jan. 2021, doi: 10.1108/CR-12-2019-0163.
[16]. E. Brynjolfsson, “The productivity paradox of information technology,” Commun. ACM, vol. 36, no. 12, pp. 66–77, Dec. 1993, doi: 10.1145/163298.163309.
[17]. I. Malaka and I. Brown, “Challenges to the Organisational Adoption of Big Data Analytics: A Case Study in the South African Telecommunications Industry,” in Proceedings of the 2015 Annual Research Conference on South Af-rican Institute of Computer Scientists and Information Technologists - SAICSIT ’15, Stellenbosch, South Africa, 2015, pp. 1–9. doi: 10.1145/2815782.2815793.
[18]. L. Bassi, “Raging Debates in HR Analytics,” p. 5, 2011.
[19]. S. Maity, “Identifying opportunities for artificial intelligence in the evolution of training and development prac-tices,” p. 13, Mar. 2019.
[20]. J. Paschen, M. Wilson, and J. J. Ferreira, “Collaborative intelligence: How human and artificial intelligence create value along the B2B sales funnel,” Bus. Horiz., vol. 63, no. 3, pp. 403–414, May 2020, doi: 10.1016/j.bushor.2020.01.003.
[21]. T. Schoenherr and C. Speier-Pero, “Data Science, Predictive Analytics, and Big Data in Supply Chain Manage-ment: Current State and Future Potential,” J. Bus. Logist., vol. 36, no. 1, pp. 120–132, Mar. 2015, doi: 10.1111/jbl.12082.
[22]. S. Zhu, J. Song, B. T. Hazen, K. Lee, and C. Cegielski, “How supply chain analytics enables operational supply chain transparency: An organizational information processing theory perspective,” Int. J. Phys. Distrib. Logist. Manag., vol. 48, no. 1, pp. 47–68, Feb. 2018, doi: 10.1108/IJPDLM-11-2017-0341.
[23]. M. P. V. de Oliveira, K. McCormack, and P. Trkman, “Business analytics in supply chains – The contingent effect of business process maturity,” Expert Syst. Appl., vol. 39, no. 5, pp. 5488–5498, Apr. 2012, doi: 10.1016/j.eswa.2011.11.073.
[24]. W. L. Pomeroy, “Academic Analytics in Higher Education: Barriers to Adoption,” p. 205, 2014.
[25]. V. Grover, R. H. L. Chiang, T.-P. Liang, and D. Zhang, “Creating Strategic Business Value from Big Data Ana-lytics: A Research Framework,” J. Manag. Inf. Syst., vol. 35, no. 2, pp. 388–423, Apr. 2018, doi: 10.1080/07421222.2018.1451951.
[26]. S. Croom, N. Vidal, W. Spetic, D. Marshall, and L. McCarthy, “Impact of social sustainability orientation and supply chain practices on operational performance,” Int. J. Oper. Prod. Manag., vol. 38, no. 12, pp. 2344–2366, Oct. 2018, doi: 10.1108/IJOPM-03-2017-0180.
[27]. E. F. Amissah, E. Gamor, M. N. Deri, and A. Amissah, “Factors influencing employee job satisfaction in Ghana’s hotel industry,” J. Hum. Resour. Hosp. Tour., vol. 15, no. 2, pp. 166–183, Apr. 2016, doi: 10.1080/15332845.2016.1084858.
[28]. S. L. Dustin and A. R. Belasen, “The Impact of Negative Compensation Changes on Individual Sales Performance,” J. Pers. Sell. Sales Manag., vol. 33, no. 4, pp. 403–417, Dec. 2013, doi: 10.2753/PSS0885-3134330404.
[29]. J. Bichsel, “Analytics in Higher Education: Benefits, Barriers, Progress, and Recommendations,” p. 31, 2012.
[30]. S. Ransbotham, D. Kiron, and P. K. Prentice, “Beyond the Hype: The Hard Work Behind Analytics Success,” p. 18, 2016.
[31]. P. Mikalef, M. Boura, G. Lekakos, and J. Krogstie, “Big Data Analytics Capabilities and Innovation: The Medi-ating Role of Dynamic Capabilities and Moderating Effect of the Environment,” Br. J. Manag., vol. 30, no. 2, pp. 272–298, Apr. 2019, doi: 10.1111/1467-8551.12343.
[32]. P. P. Tallon, “Corporate Governance of Big Data: Perspectives on Value, Risk, and Cost,” Computer, vol. 46, no. 6, pp. 32–38, Jun. 2013, doi: 10.1109/MC.2013.155.
[33]. A. Lauterbach, “Artificial intelligence and policy: quo vadis?,” Digit. Policy Regul. Gov., vol. 21, no. 3, pp. 238–263, May 2019, doi: 10.1108/DPRG-09-2018-0054.