References
[1]. Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of Plant Responses to Salt Stress. International journal of molecular sciences, 22(9), 4609. https://doi.org/10.3390/ijms22094609
[2]. Singroha, G., Kumar, S., Gupta, O. P., Singh, G. P., & Sharma, P. (2022). Uncovering the Epigenetic Marks Involved in Mediating Salt Stress Tolerance in Plants. Frontiers in genetics, 13, 811732. https://doi.org/10.3389/fgene.2022.811732
[3]. Khorasanizadeh S. (2004). The nucleosome: from genomic organization to genomic regulation. Cell, 116(2), 259–272. https://doi.org/10.1016/s0092-8674(04)00044-3
[4]. Liu, C., Lu, F., Cui, X., & Cao, X. (2010). Histone methylation in higher plants. Annual review of plant biology, 61, 395–420. https://doi.org/10.1146/annurev.arplant.043008.091939
[5]. Song, Y., Ji, D., Li, S., Wang, P., Li, Q., & Xiang, F. (2012). The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PloS one, 7(7), e41274. https://doi.org/10.1371/journal.pone.0041274
[6]. Han, B., Xu, W., Ahmed, N., Yu, A., Wang, Z., & Liu, A. (2020). Changes and Associations of Genomic Transcription and Histone Methylation with Salt Stress in Castor Bean. Plant & cell physiology, 61(6), 1120–1133. https://doi.org/10.1093/pcp/pcaa037
[7]. Shen, Y., Conde E Silva, N., Audonnet, L., Servet, C., Wei, W., & Zhou, D. X. (2014). Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis. Frontiers in plant science, 5, 290. https://doi.org/10.3389/fpls.2014.00290
[8]. Li, H., Yan, S., Zhao, L., Tan, J., Zhang, Q., Gao, F., Wang, P., Hou, H., & Li, L. (2014). Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC plant biology, 14, 105. https://doi.org/10.1186/1471-2229-14-105
[9]. Zheng, M., Liu, X., Lin, J., Liu, X., Wang, Z., Xin, M., Yao, Y., Peng, H., Zhou, D. X., Ni, Z., Sun, Q., & Hu, Z. (2019). Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. The Plant journal : for cell and molecular biology, 97(3), 587–602. https://doi.org/10.1111/tpj.14144
[10]. Cheng, X., Zhang, S., Tao, W., Zhang, X., Liu, J., Sun, J., Zhang, H., Pu, L., Huang, R., & Chen, T. (2018). INDETERMINATE SPIKELET1 Recruits Histone Deacetylase and a Transcriptional Repression Complex to Regulate Rice Salt Tolerance. Plant physiology, 178(2), 824–837. https://doi.org/10.1104/pp.18.00324
[11]. Sridha, S., & Wu, K. (2006). Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. The Plant journal: for cell and molecular biology, 46(1), 124–133. https://doi.org/10.1111/j.1365-313X.2006.02678.x
[12]. Mayer, K. S., Chen, X., Sanders, D., Chen, J., Jiang, J., Nguyen, P., Scalf, M., Smith, L. M., & Zhong, X. (2019). HDA9-PWR-HOS15 Is a Core Histone Deacetylase Complex Regulating Transcription and Development. Plant physiology, 180(1), 342–355. https://doi.org/10.1104/pp.18.01156
[13]. Yu, C., Tai, R., Wang, S., Yang, P., Luo, M., Yang, S., Cheng, K., Wang, W., Cheng, Y., & Wu, K. (2017). HISTONE DEACETYLASE6 Acts in Concert with Histone Methyltransferases SUVH4, SUVH5, and SUVH6 to Regulate Transposon Silencing. Plant Cell, 29, 1970 - 1983. https://doi.org/10.1105/tpc.16.00570
[14]. Kim J. H. (2021). Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. International journal of molecular sciences, 22(4), 2013. https://doi.org/10.3390/ijms22042013
[15]. Nunez-Vazquez, R., Desvoyes, B., & Gutierrez, C. (2022). Histone variants and modifications during abiotic stress response. Frontiers in plant science, 13, 984702. https://doi.org/10.3389/fpls.2022.984702
[16]. Nguyen, N. H., & Cheong, J. J. (2018). H2A.Z-containing nucleosomes are evicted to activate AtMYB44 transcription in response to salt stress. Biochemical and biophysical research communications, 499(4), 1039–1043. https://doi.org/10.1016/j.bbrc.2018.04.048
[17]. Erdmann, R. M., & Picard, C. L. (2020). RNA-directed DNA Methylation. PLoS genetics, 16(10), e1009034. https://doi.org/10.1371/journal.pgen.1009034
[18]. Lin, X., Zhou, M., Yao, J., Li, Q. Q., & Zhang, Y. Y. (2022). Phenotypic and Methylome Responses to Salt Stress in Arabidopsis thaliana Natural Accessions. Frontiers in plant science, 13, 841154. https://doi.org/10.3389/fpls.2022.841154
[19]. Shahid S. (2020). A DNA Methylation Reader with an Affinity for Salt Stress. The Plant cell, 32(11), 3380–3381. https://doi.org/10.1105/tpc.20.00800
[20]. Kumar, V., Khare, T., Shriram, V., & Wani, S. H. (2018). Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant cell reports, 37(1), 61–75. https://doi.org/10.1007/s00299-017-2210-4
[21]. Xu, R., Wang, Y., Zheng, H., Lu, W., Wu, C., Huang, J., Yan, K., Yang, G., & Zheng, C. (2015). Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. Journal of experimental botany, 66(19), 5997–6008. https://doi.org/10.1093/jxb/erv312
[22]. Hu, J., Cai, J., Park, S. J., Lee, K., Li, Y., Chen, Y., Yun, J. Y., Xu, T., & Kang, H. (2021). N6 -Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. The Plant journal: for cell and molecular biology, 106(6), 1759–1775. https://doi.org/10.1111/tpj.15270
[23]. Kinoshita, T., & Seki, M. (2014). Epigenetic memory for stress response and adaptation in plants. Plant & cell physiology, 55(11), 1859–1863. https://doi.org/10.1093/pcp/pcu125
[24]. Feng, X. J., Li, J. R., Qi, S. L., Lin, Q. F., Jin, J. B., & Hua, X. J. (2016). Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 113(51), E8335–E8343. https://doi.org/10.1073/pnas.1610670114
Cite this article
Xiong,H. (2023). Epigenetic regulation in plant salt stress response. Theoretical and Natural Science,6,387-393.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the International Conference on Modern Medicine and Global Health (ICMMGH 2023)
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Zhao, S., Zhang, Q., Liu, M., Zhou, H., Ma, C., & Wang, P. (2021). Regulation of Plant Responses to Salt Stress. International journal of molecular sciences, 22(9), 4609. https://doi.org/10.3390/ijms22094609
[2]. Singroha, G., Kumar, S., Gupta, O. P., Singh, G. P., & Sharma, P. (2022). Uncovering the Epigenetic Marks Involved in Mediating Salt Stress Tolerance in Plants. Frontiers in genetics, 13, 811732. https://doi.org/10.3389/fgene.2022.811732
[3]. Khorasanizadeh S. (2004). The nucleosome: from genomic organization to genomic regulation. Cell, 116(2), 259–272. https://doi.org/10.1016/s0092-8674(04)00044-3
[4]. Liu, C., Lu, F., Cui, X., & Cao, X. (2010). Histone methylation in higher plants. Annual review of plant biology, 61, 395–420. https://doi.org/10.1146/annurev.arplant.043008.091939
[5]. Song, Y., Ji, D., Li, S., Wang, P., Li, Q., & Xiang, F. (2012). The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PloS one, 7(7), e41274. https://doi.org/10.1371/journal.pone.0041274
[6]. Han, B., Xu, W., Ahmed, N., Yu, A., Wang, Z., & Liu, A. (2020). Changes and Associations of Genomic Transcription and Histone Methylation with Salt Stress in Castor Bean. Plant & cell physiology, 61(6), 1120–1133. https://doi.org/10.1093/pcp/pcaa037
[7]. Shen, Y., Conde E Silva, N., Audonnet, L., Servet, C., Wei, W., & Zhou, D. X. (2014). Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis. Frontiers in plant science, 5, 290. https://doi.org/10.3389/fpls.2014.00290
[8]. Li, H., Yan, S., Zhao, L., Tan, J., Zhang, Q., Gao, F., Wang, P., Hou, H., & Li, L. (2014). Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC plant biology, 14, 105. https://doi.org/10.1186/1471-2229-14-105
[9]. Zheng, M., Liu, X., Lin, J., Liu, X., Wang, Z., Xin, M., Yao, Y., Peng, H., Zhou, D. X., Ni, Z., Sun, Q., & Hu, Z. (2019). Histone acetyltransferase GCN5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. The Plant journal : for cell and molecular biology, 97(3), 587–602. https://doi.org/10.1111/tpj.14144
[10]. Cheng, X., Zhang, S., Tao, W., Zhang, X., Liu, J., Sun, J., Zhang, H., Pu, L., Huang, R., & Chen, T. (2018). INDETERMINATE SPIKELET1 Recruits Histone Deacetylase and a Transcriptional Repression Complex to Regulate Rice Salt Tolerance. Plant physiology, 178(2), 824–837. https://doi.org/10.1104/pp.18.00324
[11]. Sridha, S., & Wu, K. (2006). Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. The Plant journal: for cell and molecular biology, 46(1), 124–133. https://doi.org/10.1111/j.1365-313X.2006.02678.x
[12]. Mayer, K. S., Chen, X., Sanders, D., Chen, J., Jiang, J., Nguyen, P., Scalf, M., Smith, L. M., & Zhong, X. (2019). HDA9-PWR-HOS15 Is a Core Histone Deacetylase Complex Regulating Transcription and Development. Plant physiology, 180(1), 342–355. https://doi.org/10.1104/pp.18.01156
[13]. Yu, C., Tai, R., Wang, S., Yang, P., Luo, M., Yang, S., Cheng, K., Wang, W., Cheng, Y., & Wu, K. (2017). HISTONE DEACETYLASE6 Acts in Concert with Histone Methyltransferases SUVH4, SUVH5, and SUVH6 to Regulate Transposon Silencing. Plant Cell, 29, 1970 - 1983. https://doi.org/10.1105/tpc.16.00570
[14]. Kim J. H. (2021). Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. International journal of molecular sciences, 22(4), 2013. https://doi.org/10.3390/ijms22042013
[15]. Nunez-Vazquez, R., Desvoyes, B., & Gutierrez, C. (2022). Histone variants and modifications during abiotic stress response. Frontiers in plant science, 13, 984702. https://doi.org/10.3389/fpls.2022.984702
[16]. Nguyen, N. H., & Cheong, J. J. (2018). H2A.Z-containing nucleosomes are evicted to activate AtMYB44 transcription in response to salt stress. Biochemical and biophysical research communications, 499(4), 1039–1043. https://doi.org/10.1016/j.bbrc.2018.04.048
[17]. Erdmann, R. M., & Picard, C. L. (2020). RNA-directed DNA Methylation. PLoS genetics, 16(10), e1009034. https://doi.org/10.1371/journal.pgen.1009034
[18]. Lin, X., Zhou, M., Yao, J., Li, Q. Q., & Zhang, Y. Y. (2022). Phenotypic and Methylome Responses to Salt Stress in Arabidopsis thaliana Natural Accessions. Frontiers in plant science, 13, 841154. https://doi.org/10.3389/fpls.2022.841154
[19]. Shahid S. (2020). A DNA Methylation Reader with an Affinity for Salt Stress. The Plant cell, 32(11), 3380–3381. https://doi.org/10.1105/tpc.20.00800
[20]. Kumar, V., Khare, T., Shriram, V., & Wani, S. H. (2018). Plant small RNAs: the essential epigenetic regulators of gene expression for salt-stress responses and tolerance. Plant cell reports, 37(1), 61–75. https://doi.org/10.1007/s00299-017-2210-4
[21]. Xu, R., Wang, Y., Zheng, H., Lu, W., Wu, C., Huang, J., Yan, K., Yang, G., & Zheng, C. (2015). Salt-induced transcription factor MYB74 is regulated by the RNA-directed DNA methylation pathway in Arabidopsis. Journal of experimental botany, 66(19), 5997–6008. https://doi.org/10.1093/jxb/erv312
[22]. Hu, J., Cai, J., Park, S. J., Lee, K., Li, Y., Chen, Y., Yun, J. Y., Xu, T., & Kang, H. (2021). N6 -Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. The Plant journal: for cell and molecular biology, 106(6), 1759–1775. https://doi.org/10.1111/tpj.15270
[23]. Kinoshita, T., & Seki, M. (2014). Epigenetic memory for stress response and adaptation in plants. Plant & cell physiology, 55(11), 1859–1863. https://doi.org/10.1093/pcp/pcu125
[24]. Feng, X. J., Li, J. R., Qi, S. L., Lin, Q. F., Jin, J. B., & Hua, X. J. (2016). Light affects salt stress-induced transcriptional memory of P5CS1 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 113(51), E8335–E8343. https://doi.org/10.1073/pnas.1610670114