Research Article
Open access
Published on 31 July 2024
Download pdf
Wu,D.;Wei,K.;Mo,A.;Yan,V.;Wang,R. (2024). Application of lightweight materials in automobiles: A review. Applied and Computational Engineering,84,72-99.
Export citation

Application of lightweight materials in automobiles: A review

Dongsheng Wu 1, Kenny Wei 2, Arin Mo 3, Vincent Yan 4, Ruoxi Wang *,5,
  • 1 Guangdong University of Technology
  • 2 Suzhou Singapore International School
  • 3 Westminster School London
  • 4 Guanghua Cambridge International School
  • 5 Central South University of Forestry and Technology

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2755-2721/84/20240775

Abstract

Due to increasing challenges on carbon emissions, there is increased demand for more fuel economic vehicles; weight reduction, an attractive strategy for increasing fuel efficiency, has become prevalent in automobile design. This paper provides a review on weaved carbon fiber composites, long fiber carbon fiber composites, aluminum alloys, magnesium alloys, and glass fiber composites. They are assessed on strength, durability, corrosion resistance, and processing difficulty, to determine whether they can be used in lightweight automobile components. Numerous methods can be used to enhance the mechanical properties and ease of processing of these materials, to make them more appropriate for use. However, the materials all have their specific downsides like high weight, difficulties in processing, low corrosion resistance, or poor fatigue properties. We concluded that the materials are suitable for usage in automotives after undergoing specific Manufacturers should consider the relevance of these advantages and disadvantages to the application of materials in specific parts of the automobile.

Keywords

Alloys, Composites, Strength, Lightweight materials, Automobile

[1]. W. Zhang and J. Xu, “Advanced lightweight materials for Automobiles: A review,” Mater. Des., vol. 221, p. 110994, Sep. 2022, doi: 10.1016/j.matdes.2022.110994.

[2]. J. Zhou, F. Wang, and X. Wan, “Optimal Design and Experimental Investigations of Aluminium Sheet for Lightweight of Car Hood,” Mater. Today Proc., vol. 2, no. 10, Part A, pp. 5029–5036, Jan. 2015, doi: 10.1016/j.matpr.2015.10.093.

[3]. J. Wang et al., “A crack-free and high-strength Al-Cu-Mg-Mn-Zr alloy fabricated by laser powder bed fusion,” Mater. Sci. Eng. A, vol. 854, p. 143731, Sep. 2022, doi: 10.1016/j.msea.2022.143731.

[4]. X. Yu, G. Zhang, Z. Zhang, and Y. Wang, “Research on corrosion resistance of anodized and sealed 6061 aluminum alloy in 3.5 % sodium chloride solution,” Int. J. Electrochem. Sci., vol. 18, no. 5, p. 100092, May 2023, doi: 10.1016/j.ijoes.2023.100092.

[5]. Z. Zhang, Y. Li, Y. Liu, H. Li, D. Zhang, and J. Zhang, “A novel Al-Mg-Zn(-Cu) crossover alloy with ultra-high strength,” Mater. Lett., vol. 347, p. 134640, Sep. 2023, doi: 10.1016/j.matlet.2023.134640.

[6]. L. Liu et al., “Achieving preeminent strength-ductility synergy of Mg–1Sb–1Mn alloy via trace co-addition of Sn and Zn,” Mater. Sci. Eng. A, vol. 862, p. 144431, Jan. 2023, doi: 10.1016/j.msea.2022.144431.

[7]. G. Tian, J. Wang, S. Wang, C. Xue, X. Yang, and H. Su, “An ultra-light Mg-Li alloy with exceptional elastic modulus, high strength, and corrosion-resistance,” Mater. Today Commun., vol. 35, p. 105623, Jun. 2023, doi: 10.1016/j.mtcomm.2023.105623.

[8]. M. S. H. Al-Furjan, L. Shan, X. Shen, M. S. Zarei, M. H. Hajmohammad, and R. Kolahchi, “A review on fabrication techniques and tensile properties of glass, carbon, and Kevlar fiber reinforced rolymer composites,” J. Mater. Res. Technol., vol. 19, pp. 2930–2959, Jul. 2022, doi: 10.1016/j.jmrt.2022.06.008.

[9]. J. Wong, A. Altassan, and D. W. Rosen, “Additive manufacturing of fiber-reinforced polymer composites: A technical review and status of design methodologies,” Compos. Part B Eng., vol. 255, p. 110603, Apr. 2023, doi: 10.1016/j.compositesb.2023.110603.

[10]. G. Xian, R. Guo, and C. Li, “Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite,” Compos. Struct., vol. 281, p. 115060, Feb. 2022, doi: 10.1016/j.compstruct.2021.115060.

[11]. R. Nunes, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM International, 1990. Accessed: Aug. 10, 2023. [Online]. Available: https://dl.asminternational.org/handbooks/edited-volume/14/Properties-and-Selection-Nonferrous-Alloys-and

[12]. K. Loganathan and S. K. Vijaya Siva Subramani, “Design and optimization of aluminium alloy wheel rim in automobile industry,” Mater. Today Proc., Feb. 2023, doi: 10.1016/j.matpr.2023.01.207.

[13]. P. P. Awate, S. B. Barve, P. Pesode, and S. S. Shinde, “Graphene/Al6061 nanocomposite for aerospace and automobile application,” Mater. Today Proc., Jul. 2023, doi: 10.1016/j.matpr.2023.07.075.

[14]. Q. Han, M. Li, Z. Wang, X. Yun, and Y. Ouyang, “Local buckling behaviour and design of aluminium alloy plates in fire,” Thin-Walled Struct., vol. 189, p. 110886, Aug. 2023, doi: 10.1016/j.tws.2023.110886.

[15]. X. Cui, E. Qi, Z. Sun, C. Jia, Y. Zeng, and S. Wu, “Wire Oscillating Laser Additive Manufacturing of 2319 Aluminum Alloy: Optimization of Process Parameters, Microstructure, and Mechanical Properties,” Chin. J. Mech. Eng. Addit. Manuf. Front., vol. 1, no. 3, p. 100035, Sep. 2022, doi: 10.1016/j.cjmeam.2022.100035.

[16]. G. Atxaga, A. Arroyo, and B. Canflanca, “Hot stamping of aerospace aluminium alloys: Automotive technologies for the aeronautics industry,” J. Manuf. Process., vol. 81, pp. 817–827, Sep. 2022, doi: 10.1016/j.jmapro.2022.07.032.

[17]. H. Kumar, R. Prasad, and P. Kumar, “Friction stir processing of hypereutectic Al-Si alloy,” Mater. Today Proc., Jun. 2023, doi: 10.1016/j.matpr.2023.06.105.

[18]. H. Yang et al., “Defects control of aluminum alloys and their composites fabricated via laser powder bed fusion: A review,” J. Mater. Process. Technol., vol. 319, p. 118064, Oct. 2023, doi: 10.1016/j.jmatprotec.2023.118064.

[19]. S. Guo, Y. Xu, Y. Han, J. Liu, G. Xue, and H. Nagaumi, “Near net shape casting process for producing high strength 6xxx aluminum alloy automobile suspension parts,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 7, pp. 2393–2400, Jul. 2014, doi: 10.1016/S1003-6326(14)63362-8.

[20]. J. R. Cahoon, W. H. Broughton, and A. R. Kutzak, “The determination of yield strength from hardness measurements,” Metall. Trans., vol. 2, no. 7, pp. 1979–1983, Jul. 1971, doi: 10.1007/BF02913433. Y. Zuo, P.-H. Zhao, and J.-M. Zhao, “The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions,” Surf. Coat. Technol., vol. 166, no. 2, pp. 237–242, Mar. 2003, doi: 10.1016/S0257-8972(02)00779-X.

[21]. Nouha Loukil, “Alloying Elements of Magnesium Alloys: A Literature Review,” in Magnesium Alloys Structure and Properties, Tomasz Tański and Paweł Jarka, Eds., Rijeka: IntechOpen, 2021, p. Ch. 9. doi: 10.5772/intechopen.96232.

[22]. “Introduction to Magnesium,” in Magnesium, Magnesium Alloys, and Magnesium Composites, John Wiley & Sons, Ltd, 2011, pp. 1–12. doi: 10.1002/9780470905098.ch1.

[23]. P. Peng et al., “Bimodal grained Mg–0.5Gd–xMn alloys with high strength and low-cost fabricated by low-temperature extrusion,” J. Alloys Compd., vol. 935, p. 168008, Feb. 2023, doi: 10.1016/j.jallcom.2022.168008.

[24]. Z. Gu et al., “Designing lightweight multicomponent magnesium alloys with exceptional strength and high stiffness,” Mater. Sci. Eng. A, vol. 855, p. 143901, Oct. 2022, doi: 10.1016/j.msea.2022.143901.

[25]. C. Ji, A. Ma, and J. Jiang, “Mechanical properties and corrosion behavior of novel Al-Mg-Zn- Cu-Si lightweight high entropy alloys,” J. Alloys Compd., vol. 900, p. 163508, Apr. 2022, doi: 10.1016/j.jallcom.2021.163508.

[26]. R. Li, G. Wilde, and Y. Zhang, “Synergizing mechanical properties and damping capacities in a lightweight Al-Zn-Li-Mg-Cu alloy,” J. Alloys Compd., vol. 886, p. 161285, Dec. 2021, doi: 10.1016/j.jallcom.2021.161285.

[27]. Y. Li et al., “Recent advances of high strength Mg-RE alloys: Alloy development, forming and application,” J. Mater. Res. Technol., Aug. 2023, doi: 10.1016/j.jmrt.2023.08.055.

[28]. Leszek A. Dobrzański, Tomasz Tański, Szymon Malara, Mariusz Król, and Justyna Domagała- dubiel, “Contemporary Forming Methods of the Structure and Properties of Cast Magnesium Alloys,” in Magnesium Alloys, Frank Czerwinski, Ed., Rijeka: IntechOpen, 2011, p. Ch. 15. doi: 10.5772/13717.

[29]. P. Peng et al., “Significantly improvement in formability and ductility of AZ31 Mg alloy by differential temperature rolling,” J. Mater. Res. Technol., vol. 26, pp. 1293–1305, Sep. 2023, doi: 10.1016/j.jmrt.2023.07.210.

[30]. P. K. Rout, P. C. Jena, G. N. Arka, and B. Surekha, “Review on Magnesium Alloy Processing,” in Innovative Product Design and Intelligent Manufacturing Systems, BBVL. Deepak, D. Parhi, and P. C. Jena, Eds., in Lecture Notes in Mechanical Engineering. Singapore: Springer, 2020, pp. 421–428. doi: 10.1007/978- 981-15-2696-1_41.

[31]. V. N. Kale, J. Rajesh, T. Maiyalagan, C. W. Lee, and RM. Gnanamuthu, “Fabrication of Ni– Mg–Ag alloy electrodeposited material on the aluminium surface using anodizing technique and their enhanced corrosion resistance for engineering application,” Mater. Chem. Phys., vol. 282, p. 125900, Apr. 2022, doi: 10.1016/j.matchemphys.2022.125900.

[32]. J. Sun et al., “Improved barrier effect of hierarchical micro-nano precipitate framework in magnesium-aluminum alloy for corrosion mitigation,” Corros. Sci., vol. 219, p. 111220, Jul. 2023, doi: 10.1016/j.corsci.2023.111220.

[33]. Y. J. Kim, Y. M. Kim, S.-G. Hong, D. W. Kim, C. S. Lee, and S. H. Park, “Comparative study of tensile and high-cycle fatigue properties of extruded AZ91 and AZ91–0.3Ca–0.2Y alloys,” J. Mater. Sci. Technol., vol. 93, pp. 41–52, Dec. 2021, doi: 10.1016/j.jmst.2021.03.039.

[34]. M. Čanađija, X. Guo, D. Lanc, W. Yang, and J. Brnić, “Low cycle fatigue and mechanical properties of magnesium alloy Mg–6Zn–1Y–0.6Ce–0.6Zr at different temperatures,” Mater. Des., vol. 59, pp. 287–295, Jul. 2014, doi: 10.1016/j.matdes.2014.03.001.

[35]. H. Huang, Y. Dong, Y. Xing, Z. Jia, and Q. Liu, “Low cycle fatigue behaviour at 300 °C and microstructure of Al-Si-Mg casting alloys with Zr and Hf additions,” J. Alloys Compd., vol. 765, pp. 1253– 1262, Oct. 2018, doi: 10.1016/j.jallcom.2018.06.187.

[36]. R. Zhu, X. Cai, Y. Wu, L. Liu, W. Ji, and B. Hua, “Low-cycle fatigue behavior of extruded Mg– 10Gd–2Y–0.5Zr alloys,” Mater. Des., vol. 53, pp. 992–997, Jan. 2014, doi: 10.1016/j.matdes.2013.07.099.

[37]. S. Hyuk Park, S.-G. Hong, B. Ho Lee, W. Bang, and C. Soo Lee, “Low-cycle fatigue characteristics of rolled Mg–3Al–1Zn alloy,” Int. J. Fatigue, vol. 32, no. 11, pp. 1835–1842, Nov. 2010, doi: 10.1016/j.ijfatigue.2010.05.002.

[38]. S. B. Koppula et al., “Investigation into the mechanical characteristics of natural fiber-reinforced polymer composites: Effects of flax and e-glass reinforcement and stacking configuration,” Mater. Today Proc., Jul. 2023, doi: 10.1016/j.matpr.2023.07.020.

[39]. S. Ray and R. P. Cooney, “Thermal Degradation of Polymer and Polymer Composites,” in Handbook of Environmental Degradation of Materials, Elsevier, 2018, pp. 185–206. Accessed: Aug. 03, 2023. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/B9780323524728000095

[40]. F. Lu, Y. Hou, B. Zhang, L. Huang, F. Qin, and D. Song, “Study on the ratchetting behavior of glass fiber-reinforced epoxy composites: Experiment and theory,” Polym. Test., vol. 117, p. 107875, Jan. 2023, doi: 10.1016/j.polymertesting.2022.107875.

[41]. J.-H. Schmitt and T. Iung, “New developments of advanced high-strength steels for automotive applications,” Comptes Rendus Phys., vol. 19, no. 8, pp. 641–656, Dec. 2018, doi: 10.1016/j.crhy.2018.11.004.

[42]. A. Wazeer, A. Das, C. Abeykoon, A. Sinha, and A. Karmakar, “Composites for electric vehicles and automotive sector: A review,” Green Energy Intell. Transp., vol. 2, no. 1, p. 100043, Feb. 2023, doi: 10.1016/j.geits.2022.100043.

[43]. D. M. Nuruzzaman et al., “Influence of glass fiber content on tensile properties of polyamide- polypropylene based polymer blend composites,” Mater. Today Proc., vol. 29, pp. 133–137, 2020, doi: 10.1016/j.matpr.2020.05.643.

[44]. T. D. Jagannatha and G. Harish, “MECHANICAL PROPERTIES OF CARBON/GLASS FIBER REINFORCED EPOXY HYBRID POLYMER COMPOSITES,” 2015.

[45]. M. S. Tareq, B. Jony, S. Zainuddin, M. Al Ahsan, and M. V. Hosur, “Fatigue analysis and fracture toughness of graphene reinforced carbon fibre polymer composites,” Fatigue Fract. Eng. Mater. Struct., vol. 44, no. 2, pp. 461–474, Feb. 2021, doi: 10.1111/ffe.13371.

[46]. E. F. Sukur and G. Onal, “Graphene nanoplatelet modified basalt/epoxy multi-scale composites with improved tribological performance,” Wear, vol. 460–461, p. 203481, Nov. 2020, doi: 10.1016/j.wear.2020.203481.

[47]. A. K. Singh and R. Bedi, “Effect of graphene nanoplatelets on fatigue performance of Glass Fiber Reinforced Composite materials based on recycled polyethylene terephthalate,” Compos. Commun., vol. 40, p. 101595, Jun. 2023, doi: 10.1016/j.coco.2023.101595.

[48]. N. Geier, J. P. Davim, and T. Szalay, “Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review,” Compos. Part Appl. Sci. Manuf., vol. 125, p. 105552, Oct. 2019, doi: 10.1016/j.compositesa.2019.105552.

[49]. N. Geier, T. Szalay, and I. Biró, “Trochoid milling of carbon fibre-reinforced plastics (CFRP),” Procedia CIRP, vol. 77, pp. 375–378, 2018, doi: 10.1016/j.procir.2018.09.039.

[50]. Q. Wang et al., “Automatic defect prediction in glass fiber reinforced polymer based on THz- TDS signal analysis with neural networks,” Infrared Phys. Technol., vol. 115, p. 103673, Jun. 2021, doi: 10.1016/j.infrared.2021.103673.

[51]. H. Lengsfeld, H. Mainka, and V. Altstädt, “2 - Carbon and Its Properties,” in Carbon Fibers, H. Lengsfeld, H. Mainka, and V. Altstädt, Eds., Hanser, 2021, pp. 5–16. doi: 10.3139/9781569908297.002.

[52]. T. Zhu and Z. Wang, “Research and application prospect of short carbon fiber reinforced ceramic composites,” J. Eur. Ceram. Soc., Jul. 2023, doi: 10.1016/j.jeurceramsoc.2023.07.007.

[53]. B. Ma’dika and A. Z. Syahrial, “Study of Aluminum/Kevlar Fibre Composite Laminate with and without TiC Nanoparticle Impregnation, and Aluminum/Carbon Fibre Composite Laminate for Anti-ballistic Materials,” Int. J. Lightweight Mater. Manuf., Jun. 2023, doi: 10.1016/j.ijlmm.2023.06.001.

[54]. “Carbon fibers,” Wikipedia. Jul. 05, 2023. Accessed: Aug. 03, 2023. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Carbon_fibers&oldid=1163506254

[55]. Z. Rasheva, G. Zhang, and Th. Burkhart, “A correlation between the tribological and mechanical properties of short carbon fibers reinforced PEEK materials with different fiber orientations,” Tribol. Int., vol. 43, no. 8, pp. 1430–1437, Aug. 2010, doi: 10.1016/j.triboint.2010.01.020.

[56]. Z. C. He, X. Shi, E. Li, and X. K. Li, “Elastic properties and multi-scale design of long carbon fiber nonwoven reinforced plane-based isotropic composite,” Compos. Struct., vol. 251, p. 112657, Nov. 2020, doi: 10.1016/j.compstruct.2020.112657.

[57]. S. Gh. R. Emad et al., “How pigment volume concentration (PVC) and particle connectivity affect leaching of corrosion inhibitive species from coatings,” Prog. Org. Coat., vol. 134, pp. 360–372, Sep. 2019, doi: 10.1016/j.porgcoat.2019.05.008.

[58]. L. Yang, X. Shi, X. Tian, Y. Xue, J. Wang, and L. Qi, “Influence of pH value on the microstructure and corrosion behavior of carbon fiber reinforced magnesium matrix composites,” J. Mater. Res. Technol., vol. 17, pp. 412–424, Mar. 2022, doi: 10.1016/j.jmrt.2022.01.031.

[59]. X. Huang, “Fabrication and Properties of Carbon Fibers,” Materials, vol. 2, no. 4, Art. no. 4, Dec. 2009, doi: 10.3390/ma2042369.

[60]. J. Zhang, G. Lin, U. Vaidya, and H. Wang, “Past, present and future prospective of global carbon fibre composite developments and applications,” Compos. Part B Eng., vol. 250, p. 110463, Feb. 2023, doi: 10.1016/j.compositesb.2022.110463.

[61]. A. N. Dickson and D. P. Dowling, “Enhancing the bearing strength of woven carbon fibre thermoplastic composites through additive manufacturing,” Compos. Struct., vol. 212, pp. 381–388, Mar. 2019, doi: 10.1016/j.compstruct.2019.01.050.

[62]. A. Mahdi, S. Makhfi, M. Habak, Y. Turki, and Z. Bouaziz, “Analysis and optimization of machining parameters in drilling woven carbon fiber reinforced polymer CFRP,” Mater. Today Commun., vol. 35, p. 105885, Jun. 2023, doi: 10.1016/j.mtcomm.2023.105885.

[63]. L. Bowen, L. Yong, C. Jianzhong, H. Li, and Z. Xiaoyu, “Fatigue performance of carbon fiber reinforced epoxy resin: A molecular simulation,” Polym. Adv. Technol., vol. 32, no. 4, pp. 1518–1530, 2021, doi: 10.1002/pat.5188.

[64]. M. F. Ashby, “Chapter 6 - Case Studies: Materials Selection,” in Materials Selection in Mechanical Design (Fourth Edition), M. F. Ashby, Ed., Oxford: Butterworth-Heinemann, 2011, pp. 125–195. Accessed: Aug. 11, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9781856176637000060

[65]. M. F. Ashby, “Chapter 1 - Introduction,” in Materials Selection in Mechanical Design (Fourth Edition), M. F. Ashby, Ed., Oxford: Butterworth-Heinemann, 2011, pp. 1–13. doi: 10.1016/B978-1-85617-663-7.00001-1.

[66]. “Strength - Cost.” http://www-materials.eng.cam.ac.uk/mpsite/interactive_charts/strength- cost/basic.html (accessed Aug. 11, 2023).

Cite this article

Wu,D.;Wei,K.;Mo,A.;Yan,V.;Wang,R. (2024). Application of lightweight materials in automobiles: A review. Applied and Computational Engineering,84,72-99.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 4th International Conference on Materials Chemistry and Environmental Engineering

Conference website: https://www.confmcee.org/
ISBN:978-1-83558-573-3(Print) / 978-1-83558-574-0(Online)
Conference date: 13 January 2024
Editor:Seyed Ghaffar
Series: Applied and Computational Engineering
Volume number: Vol.84
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).