Research Article
Open access
Published on 10 January 2025
Download pdf
Xia,Y. (2025). Wearable Sensors for Smart Electronics. Applied and Computational Engineering,122,136-142.
Export citation

Wearable Sensors for Smart Electronics

Yaoqi Xia *,1,
  • 1 College of Energy and Electrical Engineering, Hohai University, Nanjing, China

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2755-2721/2025.19905

Abstract

Wearable sensors now play an important role in our daily life. With the advances of technologies, it has become a mature solution for continuous detection. These advanced systems leverage innovations in material science, microfabrication, and integration with the Internet of Things (IoT) to deliver continuous, real-time data on a variety of physiological parameters. Also, the development of material science allows us to produce biocompatible and flexible materials which enables the sensors to be easily attached to our skin. Meanwhile, they provide accurate and reliable measurements of vital signs such as glucose levels, lactate, pH, and more. Recent advancements include the use of microfabricated chips for sorting particles, graphene-based chemical sensors, and biofuel-powered soft electronic skins. These technologies are not only able to evaluate our body status noninvasively but also ensure its biocompatibility. The integration of near-field communication (NFC) technology further simplifies the electronics, making these systems more user-friendly and accessible. This abstract explores the cutting-edge developments in wearable sensor technologies and their potential to transform personalized health management and improve overall quality of life.

Keywords

Microfabrication, Microfluidic, Wearable Devices

[1]. Parlak, O., Keene, S.T., Marais, A., Curto, V.F., Salleo, A., 2018. Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing. Sci. Adv. 4, eaar2904.

[2]. Bandodkar, A.J., Gutruf, P., Choi, J., Lee, K.H., Sekine, Y., Reeder, J.T., Jeang, W.J., Aranyosi, A.J., Lee, S.P., Model, J.B., Ghaffari, R., Su, C.J., Leshock, J.P., Ray, T., Verrillo, A., Thomas, K., Krishnamurthi, V., Han, S., Kim, J., Krishnan, S., Hang, T., Rogers, J.A., 2019. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294.

[3]. Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; etal. Inflammation-Free, Gas-Permeable, Lightweight, Stretchable on-Skin Electronics with Nanomeshes. Nat. Nanotechnol. 2017, 12, 907−913.

[4]. Kabiri Ameri, S.; Ho, R.; Jang, H.; Tao, L.; Wang, Y.; Wang, L.; Schnyer, D. M.; Akinwande, D.; Lu, N. Graphene Electronic Tattoo Sensors. ACS Nano 2017, 11, 7634−7641.

[5]. Jeong, J. W.; Kim, M. K.; Cheng, H.; Yeo, W. H.; Huang, X.; Liu, Y.; Zhang, Y.; Huang, Y.; Rogers, J. A. Capacitive Epidermal Electronics for Electrically Safe, Long-Term Electrophysiological Measurements. Adv. Healthcare Mater. 2014, 3, 642−648.

[6]. Kramer, R. K.; Majidi, C.; Wood, R. J. Wearable Tactile Keypad with Stretchable Artificial Skin. 2011 IEEE International Conference on Robotics and Automation, May 9−13, 2011; pp 1103−1107.

[7]. Yokota, T.; Inoue, Y.; Terakawa, Y.; Reeder, J.; Kaltenbrunner, M.; Ware, T.; Yang, K.; Mabuchi, K.; Murakawa, T.; Sekino, M.; et al. Ultraflexible, Large-Area, Physiological Temperature Sensors for Multipoint Measurements. Proc. Natl. Acad. Sci. U. S. A. 2015, 112,14533−14538.

[8]. B. K. Lee, J. H. Ryu, I. B. Baek, Y . Kim, W . I. Jang, S. H. Kim, Y . S. Yoon, S. H. Kim, S. G. Hong, S. Byun, H. Y . Yu, Adv. Healthcare Mater. 2017, 6, 1700621.

[9]. A. J. Bandodkar, P. Gutruf, J. Choi, K. Lee, Y . Sekine, J. T . Reeder, W . J. Jeang, A. J. Aranyosi, S. P. Lee, J. B. Model, R. Ghaffari, C.-J. Su, J. P. Leshock, T . Ray, A. Verrillo, K. Thomas, V . Krishnamurthi, S. Han, J. Kim, S. Krishnan, T . Hang, J. A. Rogers, Sci. Adv. 2019, 5, eaav3294.

[10]. J. Q. Hu, R. Li, Y . Liu, Y . W . Su, Sci. China: Phys., Mech. Astron. 2018, 61, 5.

[11]. A. K. Yetisen, J. L. Martinez-Hurtado, B. Unal, A. Khademhosseini, H. Butt, Adv. Mater. 2018, 30, 1706910.

[12]. V. M. Martin, C. Siewert, A. Scharl, T. Harms, R. Heinze, S. Ohl, A. Radbruch, S. Miltenyi and J. Schmitz, Experimental hematology, 1998, 26, 252-264.

[13]. E. Ozkumur, A. M. Shah, J. C. Ciciliano, B. L. Emmink, D. T. Miyamoto, E. Brachtel, M. Yu, P. I. Chen, B. Morgan, J. Trautwein, A. Kimura, S. Sengupta, S. L. Stott, N. M. Karabacak, T. A. Barber, J. R. Walsh, K. Smith, P. S. Spuhler, J. P. Sullivan, R. J. Lee, D. T. Ting, X. Luo, A. T. Shaw, A. Bardia, L. V. Sequist, D. N. Louis, S. Maheswaran, R. Kapur, D. A. Haber and M. Toner, Science translational medicine, 2013, 5, 179ra147.

[14]. P. Woias, Sensors and Actuators B: Chemical, 2005, 105, 28-38.

[15]. J. Atencia and D. J. Beebe, Lab on a chip, 2006, 6, 567-574.

[16]. P. P. Austin Suthanthiraraj, M. E. Piyasena, T. A. Woods, M. A. Naivar, G. P. Lopez and S. W. Graves, Methods, 2012, 57, 259-271.

[17]. M. E. Piyasena, P. P. Austin Suthanthiraraj, R. W. Applegate Jr, A. M. Goumas, T. A. Woods, G. P. López and S. W. Graves, Analytical chemistry, 2012, 84, 1831-1839.

[18]. A. Lenshof, C. Magnusson and T. Laurell, Lab on a chip, 2012, 12, 1210-1223.

[19]. M. Li, S. Li, W. Cao, W. Li, W. Wen and G. Alici, Journal of Micromechanics and Microengineering, 2012, 22, 095001.

[20]. D. Holmes, H. Morgan and N. G. Green, Biosensors and Bioelectronics, 2006, 21, 1621-1630.

[21]. C. Yu, J. Vykoukal, D. M. Vykoukal, J. A. Schwartz, L. Shi and P. R. C. Gascoyne, Microelectromechanical Systems, Journal of, 2005, 14, 480-487.

Cite this article

Xia,Y. (2025). Wearable Sensors for Smart Electronics. Applied and Computational Engineering,122,136-142.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 5th International Conference on Materials Chemistry and Environmental Engineering

Conference website: https://2025.confmcee.org/
ISBN:978-1-83558-869-7(Print) / 978-1-83558-870-3(Online)
Conference date: 17 January 2025
Editor:Harun CELIK
Series: Applied and Computational Engineering
Volume number: Vol.122
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).