The Introduction of Different Types of OLEDs

Research Article
Open access

The Introduction of Different Types of OLEDs

Zhendong Cheng 1 , Zimeng Yan 2*
  • 1 Shanghai World Foreign Language Academy, Shanghai 200231, China    
  • 2 Beijing Lu He International Academy, Beijing 101149, China    
  • *corresponding author zmyan@student.wust.edu.pl
ACE Vol.3
ISSN (Print): 2755-273X
ISSN (Online): 2755-2721
ISBN (Print): 978-1-915371-51-5
ISBN (Online): 978-1-915371-52-2

Abstract

As display technology advances, organic light emitting diodes (OLEDs) have attracted a lot of attention worldwide due to their light weight, flexibility, wide viewing angle, etc. This paper briefly introduces the history and the different historical OLEDs, including phosphorescence, thermally activated delayed fluorescence (TADF), and triplet-triplet annihilation (TTA). Then, this article mainly presents two kinds of OLEDs. The first is small-molecule OLED with typical three organic layers. The purity of the material is quite high, and it can produce high-quality films with high fluorescence quantum efficiency, which can produce a variety of colors of light. Its disadvantages are poor thermal stability and limited carrier transport capacity. The second is polymer based OLED. Compared with small molecule organic luminescence materials, polymer materials have higher physical strength, better processibility, mechanical properties, and thermal stability. In this regard, recent research progress and the comparison between these two types of OLEDs are proposed. They both are considered the most promising display technologies.

Keywords:

Display technique, Small molecule OLED, Polymer OLED, Flexible display.

Cheng,Z.;Yan,Z. (2023). The Introduction of Different Types of OLEDs. Applied and Computational Engineering,3,362-367.
Export citation

References

[1]. J. G. EDEN, Proceedings of The IEEE, Vol. 94, No. 3, March 2006.

[2]. OLED Microdisplays: Technology and Applications, First Edition. Edited by François Templier. John Wiley & Sons, 2014.

[3]. Qiang Wei, Nannan Fei, Amjad Islam, et al. Adv. Optical Mater. 2018, 1800512.

[4]. Tang C W, VanSlyke S A. Applied physics letters, 1987, 51(12): 913-915.

[5]. J. Dresner, RCA Rev. 30, 322 (1969).

[6]. W. Helfrich and W. G. Schneidere, Phys. Rev. Lett. 14, 229 (1965).

[7]. Burroughes, J., Bradley, D., Brown, A. et al. Nature 347, 539–541 (1990).

[8]. Homer Antoniadis. Cell, 2003, 408: 314-6460.

[9]. Y. Kawamura, K. Goushi, J. Brooks,et al. Appl. Phys. Lett. 2005, 86, 071104.

[10]. E. Baranoff, B. F. E. Curchod, Dalton Trans. 2015, 44, 8318.

[11]. R. J. Holmes, S. R. Forrest, Y.-J. Tung, et al. Appl. Phys. Lett. 2003, 82, 2422.

[12]. C. Cai, S.-J. Su, T. Chiba, et al., Org. Electron. 2011, 12, 843.

[13]. H.-J. Seo, K.-M. Yoo, M. Song, et al.Org. Electron. 2010, 11, 564.

[14]. Y. J. Kim, Y. H. Son, S. H. Kim, et al. Appl. Phys. 2015, 15, 42.

[15]. R. Huang, J. Avo, T. Northey, E. Chaning-Pearce, et al. J. Mater. Chem. C 2017, 5, 6269.

[16]. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.

[17]. K. Masui, H. Nakanotani, C. Adachi, Org. Electron. 2013, 14, 2721.

[18]. K.-H. Kim, C.-K. Moon, J.-H. Lee, S.-Y. Kim, J.-J. Kim, Adv. Mater. 2014, 26, 3844.

[19]. V. Jankus, P. Data, D. Graves,et al. Adv. Funct. Mater. 2014, 24, 6178.

[20]. W. S. Jeon, T. J. Park, S. Y. Kim,et al. Org. Electron. 2009, 10, 240.

[21]. Q. Zhao, J. Z. Sun, J. Mater. Chem. C 2016, 4, 10588.

[22]. H. Bin, Y. Ji, Z. Li, N. et al. Lumin. 2017, 187, 414.

[23]. Li, Chensen; Nobuyasu, Roberto S.; Wang, Yukun; et al. Advanced Optical Materials, 2017, 5(20): 1700435.

[24]. Jinsong Tao, Ruiping Wang, Huang Yu, et al. ACS Applied Materials & Interfaces 2020 12 (8), 9701-9709.


Cite this article

Cheng,Z.;Yan,Z. (2023). The Introduction of Different Types of OLEDs. Applied and Computational Engineering,3,362-367.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2023)

ISBN:978-1-915371-51-5(Print) / 978-1-915371-52-2(Online)
Editor:Ioannis Spanopoulos, Sajjad Seifi Mofarah, Niaz Ahmed
Conference website: https://www.confmcee.org/
Conference date: 18 March 2023
Series: Applied and Computational Engineering
Volume number: Vol.3
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. J. G. EDEN, Proceedings of The IEEE, Vol. 94, No. 3, March 2006.

[2]. OLED Microdisplays: Technology and Applications, First Edition. Edited by François Templier. John Wiley & Sons, 2014.

[3]. Qiang Wei, Nannan Fei, Amjad Islam, et al. Adv. Optical Mater. 2018, 1800512.

[4]. Tang C W, VanSlyke S A. Applied physics letters, 1987, 51(12): 913-915.

[5]. J. Dresner, RCA Rev. 30, 322 (1969).

[6]. W. Helfrich and W. G. Schneidere, Phys. Rev. Lett. 14, 229 (1965).

[7]. Burroughes, J., Bradley, D., Brown, A. et al. Nature 347, 539–541 (1990).

[8]. Homer Antoniadis. Cell, 2003, 408: 314-6460.

[9]. Y. Kawamura, K. Goushi, J. Brooks,et al. Appl. Phys. Lett. 2005, 86, 071104.

[10]. E. Baranoff, B. F. E. Curchod, Dalton Trans. 2015, 44, 8318.

[11]. R. J. Holmes, S. R. Forrest, Y.-J. Tung, et al. Appl. Phys. Lett. 2003, 82, 2422.

[12]. C. Cai, S.-J. Su, T. Chiba, et al., Org. Electron. 2011, 12, 843.

[13]. H.-J. Seo, K.-M. Yoo, M. Song, et al.Org. Electron. 2010, 11, 564.

[14]. Y. J. Kim, Y. H. Son, S. H. Kim, et al. Appl. Phys. 2015, 15, 42.

[15]. R. Huang, J. Avo, T. Northey, E. Chaning-Pearce, et al. J. Mater. Chem. C 2017, 5, 6269.

[16]. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.

[17]. K. Masui, H. Nakanotani, C. Adachi, Org. Electron. 2013, 14, 2721.

[18]. K.-H. Kim, C.-K. Moon, J.-H. Lee, S.-Y. Kim, J.-J. Kim, Adv. Mater. 2014, 26, 3844.

[19]. V. Jankus, P. Data, D. Graves,et al. Adv. Funct. Mater. 2014, 24, 6178.

[20]. W. S. Jeon, T. J. Park, S. Y. Kim,et al. Org. Electron. 2009, 10, 240.

[21]. Q. Zhao, J. Z. Sun, J. Mater. Chem. C 2016, 4, 10588.

[22]. H. Bin, Y. Ji, Z. Li, N. et al. Lumin. 2017, 187, 414.

[23]. Li, Chensen; Nobuyasu, Roberto S.; Wang, Yukun; et al. Advanced Optical Materials, 2017, 5(20): 1700435.

[24]. Jinsong Tao, Ruiping Wang, Huang Yu, et al. ACS Applied Materials & Interfaces 2020 12 (8), 9701-9709.