Research Article
Open access
Published on 27 March 2025
Download pdf
Shen,W. (2025). Research Progress on the 11 and 122 Systems of Iron-Based Superconducting Materials. Applied and Computational Engineering,144,52-58.
Export citation

Research Progress on the 11 and 122 Systems of Iron-Based Superconducting Materials

Wenhan Shen *,1,
  • 1 School of Materials Science and Chemical Engineering, Harbin Engineering University, No. 145, Nantong Street, Nangang District, Harbin City, Heilongjiang Province, Harbin, China

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2755-2721/2025.21615

Abstract

Superconductivity was discovered 113 years ago in 1911. Due to the unique properties of superconducting materials, such as zero resistivity and perfect diamagnetism, they play a critical role in energy, healthcare, and other industries. As scientific research continues to advance, various types of superconducting materials, including iron-based superconducting materials, have attracted increasing attention from scientists. This paper provides an overview of the research progress and the significant development potential of various iron-based superconducting materials (primarily the 11, 122 and 1111 systems), with the aim of offering guidance and suggestions to researchers.

Keywords

iron-based superconducting materials, superconducting materials, research progress, development history

[1]. C. Becher, W.B. Gao, S. Kar, C.D. Marciniak, T. Monz, J.G. Bartholomew, P. Goldner, H. Loh, E. Marcellina, K.E.J. Goh, T.S. Koh, B. Weber, Z. Mu, J.Y. Tsai, Q.M. Yan, T. Huber-Loyola, S. Höfling, S. Gyger, S. Steinhauer, V. Zwiller, 2023 roadmap for materials for quantum technologies, Mater. Quantum Technol. 3(1) (2023) 36.

[2]. S.H. Wang, L.D. Xu, The phase diagram for ultrathin dual superconducting cylinders, Phys. Lett. A 314(4) (2003) 322-327.

[3]. Y. Wu, L.Y. Xiao, S.Y. Han, J.M. Chen, Magnetic Flux Concentration Technology Based on Soft Magnets and Superconductors, Crystals 14(8) (2024) 10.

[4]. Quantum Materials in High Magnetic Fields, Ukri (2023).

[5]. H. Takahashi, H. Okada, K. Igawa, K. Arii, Y. Kamihara, S. Matsuishi, M. Hirano, H. Hosono, K. Matsubayashi, Y. Uwatoko, High-pressure Studies on Superconducting iron-based LaFeAsO<sub>1-x</sub>F<sub>x</sub> , LaFePO and SrFe<sub>2</sub>As<sub>2</sub>, J. Phys. Soc. Jpn. 77 (2008) 78-83.

[6]. E.D. Adams, Discoveries in Superconductivity, Persistent-Switch Magnets, and Magnetic Cooling, J. Low Temp. Phys. 185(3-4) (2016) 262-268.

[7]. C. Sumereder, J. Gerhold, M. Muhr, R. Woschitz, Dielectric measurements on HTS insulation systems for electric power equipment, Physica C 386 (2003) 411-414.

[8]. M.N. Nabighian, V.J.S. Grauch, R.O. Hansen, T.R. LaFehr, Y. Li, J.W. Peirce, J.D. Phillips, M.E. Ruder, 75th Anniversary - The historical development of the magnetic method in exploration, Geophysics 70(6) (2005) 33ND-61ND.

[9]. L. Boeri, R. Hennig, P. Hirschfeld, G. Profeta, A. Sanna, E. Zurek, W.E. Pickett, M. Amsler, R. Dias, M. Eremets, C. Heil, R.J. Hemley, H.Y. Liu, Y.M. Ma, C. Pierleoni, A.N. Kolmogorov, N. Rybin, D. Novoselov, V. Anisimov, A.R. Oganov, C.J. Pickard, T.G. Bi, R. Arita, I. Errea, C. Pellegrini, R. Requist, E.K.U. Gross, E.R. Margine, S.R. Xie, Y.D. Quan, A. Hire, L. Fanfarillo, G.R. Stewart, J.J. Hamlin, V. Stanev, R.S. Gonnelli, E. Piatti, D. Romanin, D. Daghero, R. Valenti, The 2021 room-temperature superconductivity roadmap, J. Phys.-Condes. Matter 34(18) (2022) 51.

[10]. Y.S. Yang, Rigorous proof of isotope effect by Bardeen-Cooper-Schrieffer theory, J. Math. Phys. 44(5) (2003) 2009-2025.

[11]. Y.S. Yang, On Pokrovskii's anisotropic gap equations in superconductivity theory, Nonlinearity 16(6) (2003) 2061-2073.

[12]. C.K. Yang, C.H. Lee, Topological superconductivity facilitated by exchange interaction on the surface of FeTe<sub>0.5</sub>Se<sub>0.5</sub>, New J. Phys. 22(8) (2020) 6.

[13]. S.M. Raza, S. Naqvi, S.D.H. Rizvi, S. Rizvi, A. Hussain, F. Rehman, A new approach to transport theory of high <i>T</i><sub>c</sub> bismuth-based ceramic superconductors, J. Supercond. 14(5) (2001) 605-614.

[14]. J. Henheik, The BCS Critical Temperature at High Density, Math. Phys. Anal. Geom. 25(1) (2022) 27.

[15]. S. Dzhumanov, E.X. Karimboev, S.S. Djumanov, Unrelated BCS-like pairing pseudogap and critical superconducting transition temperature in various cuprate compounds, Mod. Phys. Lett. B 32(18) (2018) 10.

[16]. R. Matsunaga, R. Shimano, Nonequilibrium BCS State Dynamics Induced by Intense Terahertz Pulses in a Superconducting NbN Film, Phys. Rev. Lett. 109(18) (2012) 5.

[17]. J. Bünemann, F. Gebhard, K. Radnóczi, P. Fazekas, Gutzwiller variational theory for the Hubbard model with attractive interaction, J. Phys.-Condes. Matter 17(25) (2005) 3807-3814.

[18]. M. Sindler, C. Kadlec, P. Kuzel, K. Ilin, M. Siegel, H. Nemec, Departure from BCS response in photoexcited superconducting NbN films observed by terahertz spectroscopy, Phys. Rev. B 97(5) (2018) 5.

[19]. A.T. Boothroyd, P. Babkevich, D. Prabhakaran, P.G. Freeman, An hour-glass magnetic spectrum in an insulating, hole-doped antiferromagnet, Nature 471(7338) (2011) 341-344.

[20]. J.A. Martindale, Nuclear resonance studies of the superconducting state of yttrium barium(2) copper(3) oxygen(7), 1993.

[21]. C. Yan, F. Yang, J.X. Liu, Y.X. He, S.N. Zhang, D.Y. Wang, G. Yan, P.X. Zhang, Research Progress of Practical Application of 11 System Iron-Based Superconducting Materials, Rare Metal Mat. Eng. 53(7) (2024) 2059-2066.

[22]. H.W. Ding, L. Yu, J.Y. Xu, P.C. Huang, Z.Y. Chen, D.L. Wang, X.P. Zhang, W.G. Chen, Y.W. Ma, Investigation of the energizing characteristics of a metal-insulation iron-based superconducting coil, Physica C 626 (2024) 6.

[23]. Y.C. Zhu, D.L. Wang, H. Huang, G.X. Xu, S.F. Liu, Z. Cheng, Y.W. Ma, Enhanced transport critical current of iron-based superconducting joints, Supercond. Sci. Technol. 32(2) (2019) 5.

[24]. Z.X. Liu, M.Y. Chen, Y. Xiang, X.Y. Chen, H. Yang, T. Liu, Q.G. Mu, K. Zhao, Z.A. Ren, H.H. Wen, Multiband superconductivity and possible nodal gap in RbCr<sub>3</sub>As<sub>3</sub> revealed by Andreev reflection and single-particle tunneling measurements, Phys. Rev. B 100(9) (2019) 8.

[25]. D.M. Wang, X.C. Shangguan, J.B. He, L.X. Zhao, Y.J. Long, P.P. Wang, L. Wang, Superconductivity at 35.5 K in K-Doped CaFe<sub>2</sub>As<sub>2</sub>, J. Supercond. Nov. Magn 26(6) (2013) 2121-2124.

[26]. Mazin, II, Symmetry analysis of possible superconducting states in K<i><sub>x</sub></i>Fe<i><sub>y</sub></i>Se<sub>2</sub> superconductors, Phys. Rev. B 84(2) (2011) 6.

[27]. K. Igawa, H. Okada, H. Takahashi, S. Matsuishi, Y. Kamihara, M. Hirano, H. Hosono, K. Matsubayashi, Y. Uwatoko, Pressure-Induced Superconductivity in Iron Pnictide Compound SrFe<sub>2</sub>As<sub>2</sub>, J. Phys. Soc. Jpn. 78(2) (2009) 2.

[28]. F. Fan, X.P. Zhang, Z.T. Xu, Y.W. Ma, Recent development of iron-based superconducting films, Chinese Science Bulletin-Chinese 66(19) (2021) 2416-2429.

[29]. H. Arai, H. Usui, K. Suzuki, Y. Fuseya, K. Kuroki, Theoretical study of correlation between spin fluctuations and <i>T<sub>c</sub></i> in isovalent-doped 1111 iron-based superconductors, Phys. Rev. B 91(13) (2015).

[30]. K. Hagiwara, M. Ishikado, M. Horio, K. Koshiishi, S. Nakata, S. Ideta, K. Tanaka, K. Horiba, K. Ono, H. Kumigashira, T. Yoshida, S. Ishida, H. Eisaki, S. Shamoto, A. Fujimori, Superconducting gap and pseudogap in the surface states of the iron-based superconductor PrFeAsO<sub>1-<i>y</i></sub> studied by angle-resolved photoemission spectroscopy, Physical Review Research 3(4) (2021).

[31]. N. Fujiwara, Y. Kamihara, S. Matsuishi, H. Hosono, Homogeneous coexistence and phase segregation in 1111 iron-based pnictides studied via NMR, Journal of the Korean Physical Society 62(12) (2013) 2004-2006.

[32]. Z.A. Xu, G.H. Cao, Y.K. Li, EFFECT OF ZINC IMPURITY AND ITS IMPLICATION TO THE PAIRING SYMMETRY IN IRON-BASED SUPERCONDUCTORS, Mod. Phys. Lett. B 26(20) (2012).

Cite this article

Shen,W. (2025). Research Progress on the 11 and 122 Systems of Iron-Based Superconducting Materials. Applied and Computational Engineering,144,52-58.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Functional Materials and Civil Engineering

Conference website: https://2025.conffmce.org/
ISBN:978-1-80590-021-4(Print) / 978-1-80590-022-1(Online)
Conference date: 24 October 2025
Editor:Anil Fernando
Series: Applied and Computational Engineering
Volume number: Vol.144
ISSN:2755-2721(Print) / 2755-273X(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).