References
[1]. Kelsey, M. M., Zaepfel, A., Bjornstad, P., & Nadeau, K. J. (2014). Age-Related Consequences of Childhood Obesity. Gerontology, 60(3), 222–228. DOI: https://doi.org/10.1159/000356023.
[2]. Powers, W. T. (1973). Feedback: Beyond Behaviorism. Science, 179(4071), 351–356. DOI: https://doi.org/10.1126/science.179.4071.351.
[3]. Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience & Biobehavioral Reviews, 20(1), 1–25. DOI: https://doi.org/10.1016/0149-7634(95)00033-b.
[4]. McGloin, A., Livingstone, M., Greene, L., Webb, S., Gibson, J., Jebb, S., Cole, T., Coward, W., Wright, A., & Prentice, A. (2002). Energy and fat intake in obese and lean children at varying risk of obesity. International Journal of Obesity, 26(2), 200–207. DOI: https://doi.org/10.1038/sj.ijo.0801883.
[5]. Lowe, C. J., Morton, J. B., & Reichelt, A. C. (2020). Adolescent obesity and dietary decision making—a brain-health perspective. The Lancet Child & Adolescent Health, 4(5), 388–396. DOI: https://doi.org/10.1016/s2352-4642(19)30404-3.
[6]. Shapiro, A. L. B., Johnson, S. L., Sutton, B., Legget, K. T., Dabelea, D., & Tregellas, J. R. (2019). Eating in the absence of hunger in young children is related to brain reward network hyperactivity and reduced functional connectivity in executive control networks. Pediatric Obesity, 14(6), e12502. DOI: https://doi.org/10.1111/ijpo.12502.
[7]. Schachter, S. (1968). Obesity and Eating. Science, 161(3843), 751–756. DOI: https://doi.org/10.1126/science.161.3843.751.
[8]. Mattes, R. D., & Mela, D. J. (1986). Relationships between and among selected measures of sweet-taste preference and dietary intake. Chemical Senses, 11(4), 523–539. DOI: https://doi.org/10.1093/chemse/11.4.523.
[9]. Leigh, S. J., & Morris, M. J. (2018). The role of reward circuitry and food addiction in the obesity epidemic: An update. Biological Psychology, 131, 31–42. DOI: https://doi.org/10.1016/j.biopsycho.2016.12.013.
[10]. Martire, S. I., Westbrook, R. F., & Morris, M. J. (2015). Effects of long-term cycling between palatable cafeteria diet and regular chow on intake, eating patterns, and response to saccharin and sucrose. Physiology & Behavior, 139, 80–88. DOI: https://doi.org/10.1016/j.physbeh.2014.11.006.
[11]. Weingarten, H. P., & Watson, S. D. (1982). Sham feeding as a procedure for assessing the influence of diet palatability on food intake. Physiology & Behavior, 28(3), 401–407. DOI: https://doi.org/10.1016/0031-9384(82)90131-7.
[12]. Berthoud, H., Zheng, H., & Shin, A. C. (2012). Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery. Annals of the New York Academy of Sciences, 1264(1), 36–48. DOI: https://doi.org/10.1111/j.1749-6632.2012.06573.x.
[13]. Myers, K. P., & Sclafani, A. (2003). Conditioned acceptance and preference but not altered taste reactivity responses to bitter and sour flavors paired with intragastric glucose infusion. Physiology & Behavior, 78(2), 173–183. DOI: https://doi.org/10.1016/s0031-9384(02)00890-9.
[14]. Holland, P., & Petrovich, G. (2005). A neural systems analysis of the potentiation of feeding by conditioned stimuli. Physiology & Behavior, 86(5), 747–761. DOI: https://doi.org/10.1016/j.physbeh.2005.08.062.
[15]. Lowe, C. J., Reichelt, A. C., & Hall, P. A. (2019). The Prefrontal Cortex and Obesity: A Health Neuroscience Perspective. Trends in Cognitive Sciences, 23(4), 349–361. DOI: https://doi.org/10.1016/j.tics.2019.01.005.
[16]. Hare, T., Camerer, C., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. NeuroImage, 47, S95. DOI: https://doi.org/10.1016/s1053-8119(09)70776-1.
[17]. Han, J. E., Boachie, N., Garcia-Garcia, I., Michaud, A., & Dagher, A. (2018). Neural correlates of dietary self-control in healthy adults: A meta-analysis of functional brain imaging studies. Physiology & Behavior, 192, 98–108. DOI: https://doi.org/10.1016/j.physbeh.2018.02.037.
[18]. Baker, K. D., & Reichelt, A. C. (2016). Impaired fear extinction retention and increased anxiety-like behaviours induced by limited daily access to a high-fat/high-sugar diet in male rats: Implications for diet-induced prefrontal cortex dysregulation. Neurobiology of Learning and Memory, 136, 127–138. DOI: https://doi.org/10.1016/j.nlm.2016.10.002.
[19]. Pujol, J., Blanco-Hinojo, L., Martínez-Vilavella, G., Deus, J., Pérez-Sola, V., & Sunyer, J. (2021). Dysfunctional Brain Reward System in Child Obesity. Cerebral Cortex. DOI: https://doi.org/10.1093/cercor/bhab092.
Cite this article
Zhou,Z. (2023). A Meta-Analysis of Reward Function and Childhood Obesity. Lecture Notes in Education Psychology and Public Media,2,1015-1020.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 3rd International Conference on Educational Innovation and Philosophical Inquiries (ICEIPI 2022), Part I
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Kelsey, M. M., Zaepfel, A., Bjornstad, P., & Nadeau, K. J. (2014). Age-Related Consequences of Childhood Obesity. Gerontology, 60(3), 222–228. DOI: https://doi.org/10.1159/000356023.
[2]. Powers, W. T. (1973). Feedback: Beyond Behaviorism. Science, 179(4071), 351–356. DOI: https://doi.org/10.1126/science.179.4071.351.
[3]. Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience & Biobehavioral Reviews, 20(1), 1–25. DOI: https://doi.org/10.1016/0149-7634(95)00033-b.
[4]. McGloin, A., Livingstone, M., Greene, L., Webb, S., Gibson, J., Jebb, S., Cole, T., Coward, W., Wright, A., & Prentice, A. (2002). Energy and fat intake in obese and lean children at varying risk of obesity. International Journal of Obesity, 26(2), 200–207. DOI: https://doi.org/10.1038/sj.ijo.0801883.
[5]. Lowe, C. J., Morton, J. B., & Reichelt, A. C. (2020). Adolescent obesity and dietary decision making—a brain-health perspective. The Lancet Child & Adolescent Health, 4(5), 388–396. DOI: https://doi.org/10.1016/s2352-4642(19)30404-3.
[6]. Shapiro, A. L. B., Johnson, S. L., Sutton, B., Legget, K. T., Dabelea, D., & Tregellas, J. R. (2019). Eating in the absence of hunger in young children is related to brain reward network hyperactivity and reduced functional connectivity in executive control networks. Pediatric Obesity, 14(6), e12502. DOI: https://doi.org/10.1111/ijpo.12502.
[7]. Schachter, S. (1968). Obesity and Eating. Science, 161(3843), 751–756. DOI: https://doi.org/10.1126/science.161.3843.751.
[8]. Mattes, R. D., & Mela, D. J. (1986). Relationships between and among selected measures of sweet-taste preference and dietary intake. Chemical Senses, 11(4), 523–539. DOI: https://doi.org/10.1093/chemse/11.4.523.
[9]. Leigh, S. J., & Morris, M. J. (2018). The role of reward circuitry and food addiction in the obesity epidemic: An update. Biological Psychology, 131, 31–42. DOI: https://doi.org/10.1016/j.biopsycho.2016.12.013.
[10]. Martire, S. I., Westbrook, R. F., & Morris, M. J. (2015). Effects of long-term cycling between palatable cafeteria diet and regular chow on intake, eating patterns, and response to saccharin and sucrose. Physiology & Behavior, 139, 80–88. DOI: https://doi.org/10.1016/j.physbeh.2014.11.006.
[11]. Weingarten, H. P., & Watson, S. D. (1982). Sham feeding as a procedure for assessing the influence of diet palatability on food intake. Physiology & Behavior, 28(3), 401–407. DOI: https://doi.org/10.1016/0031-9384(82)90131-7.
[12]. Berthoud, H., Zheng, H., & Shin, A. C. (2012). Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery. Annals of the New York Academy of Sciences, 1264(1), 36–48. DOI: https://doi.org/10.1111/j.1749-6632.2012.06573.x.
[13]. Myers, K. P., & Sclafani, A. (2003). Conditioned acceptance and preference but not altered taste reactivity responses to bitter and sour flavors paired with intragastric glucose infusion. Physiology & Behavior, 78(2), 173–183. DOI: https://doi.org/10.1016/s0031-9384(02)00890-9.
[14]. Holland, P., & Petrovich, G. (2005). A neural systems analysis of the potentiation of feeding by conditioned stimuli. Physiology & Behavior, 86(5), 747–761. DOI: https://doi.org/10.1016/j.physbeh.2005.08.062.
[15]. Lowe, C. J., Reichelt, A. C., & Hall, P. A. (2019). The Prefrontal Cortex and Obesity: A Health Neuroscience Perspective. Trends in Cognitive Sciences, 23(4), 349–361. DOI: https://doi.org/10.1016/j.tics.2019.01.005.
[16]. Hare, T., Camerer, C., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. NeuroImage, 47, S95. DOI: https://doi.org/10.1016/s1053-8119(09)70776-1.
[17]. Han, J. E., Boachie, N., Garcia-Garcia, I., Michaud, A., & Dagher, A. (2018). Neural correlates of dietary self-control in healthy adults: A meta-analysis of functional brain imaging studies. Physiology & Behavior, 192, 98–108. DOI: https://doi.org/10.1016/j.physbeh.2018.02.037.
[18]. Baker, K. D., & Reichelt, A. C. (2016). Impaired fear extinction retention and increased anxiety-like behaviours induced by limited daily access to a high-fat/high-sugar diet in male rats: Implications for diet-induced prefrontal cortex dysregulation. Neurobiology of Learning and Memory, 136, 127–138. DOI: https://doi.org/10.1016/j.nlm.2016.10.002.
[19]. Pujol, J., Blanco-Hinojo, L., Martínez-Vilavella, G., Deus, J., Pérez-Sola, V., & Sunyer, J. (2021). Dysfunctional Brain Reward System in Child Obesity. Cerebral Cortex. DOI: https://doi.org/10.1093/cercor/bhab092.