
Ferroelectric HfO2: A promising material for next-generation ferroelectric memory devices
- 1 Department of Electrical Engineering, University of Wisconsin-Madison, Madison, WI, USA
* Author to whom correspondence should be addressed.
Abstract
Recently, ferroelectric material is playing a more and more important role in the applications of semiconductor devices, especially in random access memory(RAM) devices, and transistors. Compared with traditional flash memories, FRAMs have advantages such as low operation voltage, a huge number of writes, non-volatile properties, and high write speed. However, in the early stage, the main materials used to produce FRAMs are perovskites with crystal structures. Those materials like PbTiO3/PbZr0.3Ti0.7O3 are restricted by the size and the complementary-metal-oxide-semiconductor (CMOS) technology, which is the common technology used to process semiconductor materials. Hafnium oxide material is a newly discovered material with ferroelectricity when doped with Zirconium(Zr). The Hf0.5Zr0.5O2 thin film is an ideal material for FRAMs, which has a smaller size than perovskites FRAMs and is compatible with current CMOS technology, which means lower cost and higher performance. This article aims to explain some properties of hafnium oxide materials based on different aspects, like dopants, thickness, annealing, and electrodes, and elaborate on the advantages of FRAMs made by hafnium oxide materials.
Keywords
HfO2, ferroelectricity, FeRAM
[1]. T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in hafnium oxide thin films,” Applied Physics Letters, vol. 99, no. 10, pp. 102903, 2011.
[2]. X. Liu, D. Zhou, Y. Guan, S. Li, F. Cao, and X. Dong, “Endurance properties of silicon-doped hafnium oxide ferroelectric and antiferroelectric-like thin films: A comparative study and prediction,” Acta Materialia, vol. 154, pp. 190-198, 2018/08/01/, 2018.
[3]. U. Schroeder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum, and T. Mikolajick, “Hafnium Oxide Based CMOS Compatible Ferroelectric Materials,” ECS Journal of Solid State Science and Technology, vol. 2, no. 4, pp. N69-N72, 2013.
[4]. S. J. Kim, J. Mohan, H. S. Kim, J. Lee, C. D. Young, L. Colombo, S. R. Summerfelt, T. San, and J. Kim, “Low-voltage operation and high endurance of 5-nm ferroelectric Hf0.5Zr0.5O2 capacitors,” Applied Physics Letters, vol. 113, no. 18, pp. 182903, 2018/10/29, 2018.
[5]. T.-J. Chang, C. Liu, C.-C. Fan, H.-H. Hsu, H.-H. Chen, W.-H. Chen, Y.-C. Fan, T.-M. Lee, C.-L. Lin, J. Ma, Z.-W. Zheng, C.-H. Cheng, S.-A. Wang, and C.-Y. Chang, “Investigation on polarization characteristics of ferroelectric memories with thermally stable hafnium aluminum oxides,” Vacuum, vol. 166, pp. 11-14, 2019/08/01/, 2019.
[6]. J. Müller, U. Schröder, T. S. Böscke, I. Müller, U. Böttger, L. Wilde, J. Sundqvist, M. Lemberger, P. Kücher, T. Mikolajick, and L. Frey, “Ferroelectricity in yttrium-doped hafnium oxide,” Journal of Applied Physics, vol. 110, no. 11, pp. 114113, 2011/12/01, 2011.
[7]. S. Starschich, S. Menzel, and U. Böttger, “Pulse wake-up and breakdown investigation of ferroelectric yttrium doped HfO2,” Journal of Applied Physics, vol. 121, no. 15, pp. 154102, 2017/04/21, 2017.
[8]. A. G. Chernikova, D. S. Kuzmichev, D. V. Negrov, M. G. Kozodaev, S. N. Polyakov, and A. M. Markeev, “Ferroelectric properties of full plasma-enhanced ALD TiN/La:HfO2/TiN stacks,” Applied Physics Letters, vol. 108, no. 24, pp. 242905, 2016/06/13, 2016.
[9]. T. Song, H. Tan, R. Bachelet, G. Saint-Girons, I. Fina, and F. Sánchez, “Impact of La Concentration on Ferroelectricity of La-Doped HfO2 Epitaxial Thin Films,” ACS Applied Electronic Materials, vol. 3, no. 11, pp. 4809-4816, 2021/11/23, 2021.
[10]. S. Starschich, and U. Boettger, “An extensive study of the influence of dopants on the ferroelectric properties of HfO2,” Journal of Materials Chemistry C, vol. 5, no. 2, pp. 333-338, 2017.
[11]. S. J. Kim, J. Mohan, S. R. Summerfelt, and J. Kim, “Ferroelectric Hf0.5Zr0.5O2 Thin Films: A Review of Recent Advances,” JOM, vol. 71, no. 1, pp. 246-255, 2019/01/01, 2019.
[12]. C. S. Hwang, Atomic Layer Deposition for Semiconductors, Newww York, 2014.
[13]. J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Letters, vol. 12, no. 8, pp. 4318-4323, 2012/08/08, 2012.
[14]. U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M. I. Popovici, S. V. Kalinin, and T. Mikolajick, “Impact of different dopants on the switching properties of ferroelectric hafniumoxide,” Japanese Journal of Applied Physics, vol. 53, no. 8S1, pp. 08LE02, 2014/07/10, 2014.
[15]. C.-K. Lee, E. Cho, H.-S. Lee, C. S. Hwang, and S. Han, “First-principles study on doping and phase stability of ${\text{HfO}}_{2}$,” Physical Review B, vol. 78, no. 1, pp. 012102, 07/03/, 2008.
[16]. Y. W. Lu, J. Shieh, and F. Y. Tsai, “Induction of ferroelectricity in nanoscale ZrO2/HfO2 bilayer thin films on Pt/Ti/SiO2/Si substrates,” Acta Materialia, vol. 115, pp. 68-75, 2016/08/15/, 2016.
[17]. M. Hyuk Park, H. Joon Kim, Y. Jin Kim, T. Moon, and C. Seong Hwang, “The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity,” Applied Physics Letters, vol. 104, no. 7, pp. 072901, 2014/02/17, 2014.
[18]. E. Yurchuk, J. Müller, S. Knebel, J. Sundqvist, A. P. Graham, T. Melde, U. Schröder, and T. Mikolajick, “Impact of layer thickness on the ferroelectric behaviour of silicon doped hafnium oxide thin films,” Thin Solid Films, vol. 533, pp. 88-92, 2013/04/30/, 2013.
[19]. M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, “Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature,” Applied Physics Letters, vol. 102, no. 24, pp. 242905, 2013/06/17, 2013.
[20]. S. S. Cheema, D. Kwon, N. Shanker, R. dos Reis, S.-L. Hsu, J. Xiao, H. Zhang, R. Wagner, A. Datar, M. R. McCarter, C. R. Serrao, A. K. Yadav, G. Karbasian, C.-H. Hsu, A. J. Tan, L.-C. Wang, V. Thakare, X. Zhang, A. Mehta, E. Karapetrova, R. V. Chopdekar, P. Shafer, E. Arenholz, C. Hu, R. Proksch, R. Ramesh, J. Ciston, and S. Salahuddin, “Enhanced ferroelectricity in ultrathin films grown directly on silicon,” Nature, vol. 580, no. 7804, pp. 478-482, 2020/04/01, 2020.
[21]. B.-T. Lin, Y.-W. Lu, J. Shieh, and M.-J. Chen, “Induction of ferroelectricity in nanoscale ZrO2 thin films on Pt electrode without post-annealing,” Journal of the European Ceramic Society, vol. 37, no. 3, pp. 1135-1139, 2017/03/01/, 2017.
[22]. R. Cao, Y. Wang, S. Zhao, Y. Yang, X. Zhao, W. Wang, X. Zhang, H. Lv, Q. Liu, and M. Liu, “Effects of Capping Electrode on Ferroelectric Properties of Hf0.5Zr0.5O2 Thin Films,” IEEE Electron Device Letters, vol. 39, no. 8, pp. 1207-1210, 2018.
[23]. H. A. Hsain, Y. Lee, G. Parsons, and J. L. Jones, “Compositional dependence of crystallization temperatures and phase evolution in hafnia-zirconia (HfxZr1−x)O2 thin films,” Applied Physics Letters, vol. 116, no. 19, pp. 192901, 2020/05/11, 2020.
[24]. D. Das, V. Gaddam, and S. Jeon, “Demonstration of High Ferroelectricity (Pr ~ 29 μ C/cm2) in Zr Rich HfxZr1-xO2 Films,” IEEE Electron Device Letters, vol. 41, no. 1, pp. 34-37, 2020. Y. Hara, Mohit, T. Murakami, S. Migita, H. Ota, Y. Morita, and E. Tokumitsu, “Impact of reduced pressure crystallization on ferroelectric properties in hafnium-zirconium dioxide films deposited by sputtering,” Japanese Journal of Applied Physics, vol. 60, no. SF, pp. SFFB05, 2021/07/23, 2021.
[25]. Q. Luo, T. Gong, Y. Cheng, Q. Zhang, H. Yu, J. Yu, H. Ma, X. Xu, K. Huang, X. Zhu, D. Dona, J. Yin, P. Yuan, L. Tai, J. Gao, J. Li, H. Yin, S. Long, Q. Liu, H. Lv, and M. Liu, "Hybrid 1T e-DRAM and e-NVM Realized in One 10 nm node Ferro FinFET device with Charge Trapping and Domain Switching Effects." pp. 2.6.1-2.6.4.
[26]. S. Shin, J.-M. Koo, S. Kim, B.-S. Seo, J.-H. Lee, H. Baik, Y. Park, H. Han, S. Baik, and J. K. Lee, “Fabrication of 3-Dimensional PbZr1−x Ti x O3 Nanoscale Thin Film Capacitors for High Density Ferroelectric Random Access Memory Devices,” Journal of Nanoscience and Nanotechnology, vol. 6, no. 11, pp. 3333-3337, //, 2006.
[27]. S. Dünkel, M. Trentzsch, R. Richter, P. Moll, C. Fuchs, O. Gehring, M. Majer, S. Wittek, B. Müller, T. Melde, H. Mulaosmanovic, S. Slesazeck, S. Müller, J. Ocker, M. Noack, D. A. Löhr, P. Polakowski, J. Müller, T. Mikolajick, J. Höntschel, B. Rice, J. Pellerin, and S. Beyer, "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond." pp. 19.7.1-19.7.4.
Cite this article
You,H. (2023). Ferroelectric HfO2: A promising material for next-generation ferroelectric memory devices. Applied and Computational Engineering,7,1-7.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 3rd International Conference on Materials Chemistry and Environmental Engineering (CONF-MCEE 2023), Part II
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).