Assess stimulation-induced dyskinesia and its potential physiological mechanism using phase-amplitude coupling

Research Article
Open access

Assess stimulation-induced dyskinesia and its potential physiological mechanism using phase-amplitude coupling

Rui Gao 1
  • 1 School of Information Science and Technology, Fudan, Shanghai, China, 200433    
  • *corresponding author
Published on 28 April 2023 | https://doi.org/10.54254/2753-8818/4/20220694
TNS Vol.4
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-915371-27-0
ISBN (Online): 978-1-915371-28-7

Abstract

With the increasing use of deep brain stimulation (DBS) on clinical treatment of Parkinson’s diseases, stimulation-induced dyskinesia (SID) becomes more and more common. SID was often detected shortly after DBS treatment on patients. However, the pathogenesis of SID and exact region of SID remains unclear. The aim of this paper is to review the studies of stimulation-induced dyskinesia and try to propose a new method to study and quantify SID, which is phase-amplitude coupling. phase-amplitude coupling (PAC) has been widely used in many other studies of brain-related illness and therapies. It is believed to have a profound relationship with our brain activities. Because of the features of PAC itself, the anatomical regions related to SID after pallidal DBS in Parkinson's disease (PD) patients can be possibly found, and the value of PAC can be served as a biomarker for us to assess the stimulation-induced dyskinesia. However, further researches on patients should be done to verify this method. It is very important to understand how SID is formed and its pathogenesis because it may help us find the appropriate parameters of deep brain stimulation and reduce the damage caused by the implant of electrode

Keywords:

Stimulation-induced Dyskinesia, Deep brain stimulation, Parkinson's disease, Dyskinesia

Gao,R. (2023). Assess stimulation-induced dyskinesia and its potential physiological mechanism using phase-amplitude coupling. Theoretical and Natural Science,4,728-734.
Export citation

References

[1]. Canolty, R. T., & Knight, R. T. "The functional role of cross-frequency coupling". Trends in Cognitive Sciences, 14(11), 506–515(2010)

[2]. Odekerken, V. J., Boel, J. A., Schmand, B. A., de Haan, R. J., Figee, M., van den Munckhof, P., Schuurman, P. R., & de Bie, R. M. "GPi vs STN deep brain stimulation for Parkinson disease". Neurology, 86(8), 755–761(2016).

[3]. Zheng, Z., Li, Y., Li, J., Zhang, Y., Zhang, X., & Zhuang, P. "Stimulation-Induced Dyskinesia in the Early Stage after Subthalamic Deep Brain Stimulation". Stereotactic and Functional Neurosurgery, 88(1), 29–34(2009)

[4]. Bezard, E., Brotchie, J. M., & Gross, C. E . "Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies". Nature Reviews Neuroscience, 2(8), 577–588(2001)

[5]. [5]Wang, N., Wang, K., Wang, Q., Fan, S., Fu, Z., Zhang, F., Wang, L., & Meng, F. "Stimulation-Induced Dyskinesia After Subthalamic Nucleus Deep Brain Stimulation in Patients With Meige Syndrome". Neuromodulation: Technology at the Neural Interface, 24(2), 286–292 (2021)

[6]. Tsuboi, T., Charbel, M., Peterside, D. T., Rana, M., Elkouzi, A., Deeb, W., Ramirez‐Zamora, A., Lemos Melo Lobo Jofili Lopes, J., Almeida, L., Zeilman, P. R., Eisinger, R. S., Foote, K. D., Okromelidze, L., Grewal, S. S., Okun, M. S., & Middlebrooks, E. H. "Pallidal Connectivity Profiling of Stimulation‐Induced Dyskinesia in Parkinson’s Disease". Movement Disorders, 36(2), 380–388. (2020)

[7]. Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., Tamozhnikov, S. S., Kozlova, E. A., Leto, I. V., &Slobodskaya, H. R. "Cross-Frequency Coupling in Developmental Perspective". Frontiers in Human Neuroscience, 13. (2019)

[8]. Gong, R., Mühlberg, C., Wegscheider, M., Fricke, C., Rumpf, J. J., Knösche, T. R., & Classen, J. "Cross-frequency phase-amplitude coupling in repetitive movements in patients with Parkinson’s disease". Journal of Neurophysiology, 127(6), 1606–1621. (2022)

[9]. van Driel, J., Cox, R., & Cohen, M. X. "Phase-clustering bias in phase–amplitude cross-frequency coupling and its removal". Journal of Neuroscience Methods, 254, 60–72. (2015)

[10]. Munia, T. T. K., &Aviyente, S. "A Time-frequency Based Multivariate Phase-amplitude Coupling Measure". ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). (2019)

[11]. Yin, Z., Zhu, G., Liu, Y., Zhao, B., Liu, D., Bai, Y., Zhang, Q., Shi, L., Feng, T., Yang, A., Liu, H., Meng, F., Neumann, W. J., Kühn, A. A., Jiang, Y., & Zhang, J. "Cortical phase-amplitude coupling is key to the occurrence and treatment of freezing of gait". Brain, 145(7), 2407–2421. (2022)

[12]. [12]Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Berger, M. S., Barbaro, N. M., & Knight, R. T. "High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex". Science, 313(5793), 1626–1628. (2006)

[13]. Tort, A. B. L., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M., &Kopell, N. J. "Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task". Proceedings of the National Academy of Sciences, 105(51), 20517–20522. (2008)

[14]. Kramer, M., & Eden, U. "Assessment of cross-frequency coupling with confidence using generalized linear models". Journal of Neuroscience Methods, 220(1), 64–74. (2013)

[15]. Mormann, F., Fell, J., Axmacher, N., Weber, B., Lehnertz, K., Elger, C. E., & Fernández, G. "Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task". Hippocampus, 15(7), 890–900. (2005)

[16]. Amiri, M., Frauscher, B., &Gotman, J. "Phase-Amplitude Coupling Is Elevated in Deep Sleep and in the Onset Zone of Focal Epileptic Seizures". Frontiers in Human Neuroscience, 10. (2016)

[17]. Siebenhühner, F., Wang, S. H., Arnulfo, G., Lampinen, A., Nobili, L., Palva, J. M., &Palva, S. "Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings". PLOS Biology, 18(5), e3000685. (2020)

[18]. Hülsemann, M. J., Naumann, E., & Rasch, B. "Quantification of Phase-Amplitude Coupling in Neuronal Oscillations: Comparison of Phase-Locking Value, Mean Vector Length, Modulation Index, and Generalized-Linear-Modeling-Cross-Frequency-Coupling". Frontiers in Neuroscience, 13. (2019).


Cite this article

Gao,R. (2023). Assess stimulation-induced dyskinesia and its potential physiological mechanism using phase-amplitude coupling. Theoretical and Natural Science,4,728-734.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 2nd International Conference on Biological Engineering and Medical Science (ICBioMed 2022), Part II

ISBN:978-1-915371-27-0(Print) / 978-1-915371-28-7(Online)
Editor:Gary Royle, Steven M. Lipkin
Conference website: http://www.icbiomed.org
Conference date: 7 November 2022
Series: Theoretical and Natural Science
Volume number: Vol.4
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Canolty, R. T., & Knight, R. T. "The functional role of cross-frequency coupling". Trends in Cognitive Sciences, 14(11), 506–515(2010)

[2]. Odekerken, V. J., Boel, J. A., Schmand, B. A., de Haan, R. J., Figee, M., van den Munckhof, P., Schuurman, P. R., & de Bie, R. M. "GPi vs STN deep brain stimulation for Parkinson disease". Neurology, 86(8), 755–761(2016).

[3]. Zheng, Z., Li, Y., Li, J., Zhang, Y., Zhang, X., & Zhuang, P. "Stimulation-Induced Dyskinesia in the Early Stage after Subthalamic Deep Brain Stimulation". Stereotactic and Functional Neurosurgery, 88(1), 29–34(2009)

[4]. Bezard, E., Brotchie, J. M., & Gross, C. E . "Pathophysiology of levodopa-induced dyskinesia: Potential for new therapies". Nature Reviews Neuroscience, 2(8), 577–588(2001)

[5]. [5]Wang, N., Wang, K., Wang, Q., Fan, S., Fu, Z., Zhang, F., Wang, L., & Meng, F. "Stimulation-Induced Dyskinesia After Subthalamic Nucleus Deep Brain Stimulation in Patients With Meige Syndrome". Neuromodulation: Technology at the Neural Interface, 24(2), 286–292 (2021)

[6]. Tsuboi, T., Charbel, M., Peterside, D. T., Rana, M., Elkouzi, A., Deeb, W., Ramirez‐Zamora, A., Lemos Melo Lobo Jofili Lopes, J., Almeida, L., Zeilman, P. R., Eisinger, R. S., Foote, K. D., Okromelidze, L., Grewal, S. S., Okun, M. S., & Middlebrooks, E. H. "Pallidal Connectivity Profiling of Stimulation‐Induced Dyskinesia in Parkinson’s Disease". Movement Disorders, 36(2), 380–388. (2020)

[7]. Knyazev, G. G., Savostyanov, A. N., Bocharov, A. V., Tamozhnikov, S. S., Kozlova, E. A., Leto, I. V., &Slobodskaya, H. R. "Cross-Frequency Coupling in Developmental Perspective". Frontiers in Human Neuroscience, 13. (2019)

[8]. Gong, R., Mühlberg, C., Wegscheider, M., Fricke, C., Rumpf, J. J., Knösche, T. R., & Classen, J. "Cross-frequency phase-amplitude coupling in repetitive movements in patients with Parkinson’s disease". Journal of Neurophysiology, 127(6), 1606–1621. (2022)

[9]. van Driel, J., Cox, R., & Cohen, M. X. "Phase-clustering bias in phase–amplitude cross-frequency coupling and its removal". Journal of Neuroscience Methods, 254, 60–72. (2015)

[10]. Munia, T. T. K., &Aviyente, S. "A Time-frequency Based Multivariate Phase-amplitude Coupling Measure". ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). (2019)

[11]. Yin, Z., Zhu, G., Liu, Y., Zhao, B., Liu, D., Bai, Y., Zhang, Q., Shi, L., Feng, T., Yang, A., Liu, H., Meng, F., Neumann, W. J., Kühn, A. A., Jiang, Y., & Zhang, J. "Cortical phase-amplitude coupling is key to the occurrence and treatment of freezing of gait". Brain, 145(7), 2407–2421. (2022)

[12]. [12]Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S., Kirsch, H. E., Berger, M. S., Barbaro, N. M., & Knight, R. T. "High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex". Science, 313(5793), 1626–1628. (2006)

[13]. Tort, A. B. L., Kramer, M. A., Thorn, C., Gibson, D. J., Kubota, Y., Graybiel, A. M., &Kopell, N. J. "Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task". Proceedings of the National Academy of Sciences, 105(51), 20517–20522. (2008)

[14]. Kramer, M., & Eden, U. "Assessment of cross-frequency coupling with confidence using generalized linear models". Journal of Neuroscience Methods, 220(1), 64–74. (2013)

[15]. Mormann, F., Fell, J., Axmacher, N., Weber, B., Lehnertz, K., Elger, C. E., & Fernández, G. "Phase/amplitude reset and theta-gamma interaction in the human medial temporal lobe during a continuous word recognition memory task". Hippocampus, 15(7), 890–900. (2005)

[16]. Amiri, M., Frauscher, B., &Gotman, J. "Phase-Amplitude Coupling Is Elevated in Deep Sleep and in the Onset Zone of Focal Epileptic Seizures". Frontiers in Human Neuroscience, 10. (2016)

[17]. Siebenhühner, F., Wang, S. H., Arnulfo, G., Lampinen, A., Nobili, L., Palva, J. M., &Palva, S. "Genuine cross-frequency coupling networks in human resting-state electrophysiological recordings". PLOS Biology, 18(5), e3000685. (2020)

[18]. Hülsemann, M. J., Naumann, E., & Rasch, B. "Quantification of Phase-Amplitude Coupling in Neuronal Oscillations: Comparison of Phase-Locking Value, Mean Vector Length, Modulation Index, and Generalized-Linear-Modeling-Cross-Frequency-Coupling". Frontiers in Neuroscience, 13. (2019).