
Potential regulatory mechanisms for NKCC1 and KCC2 that induce temporal lobe epilepsy
- 1 The Webb Schools of California
* Author to whom correspondence should be addressed.
Abstract
The specific cause for mesial temporal lobe epilepsy at a molecular level has remained unknown for decades. Much research has proposed possible mechanisms that would induce mesial temporal lobe epilepsy. In this article, we briefly summarize some of the present theories on the cause of this disease and then introduce our theory on NKCC1 upregulation in hippocampal pyramidal cells as a potential cause of epilepsy. We specifically discussed the WNK pathway that regulates NKCC1 and KCC2 as a potential cause of epilepsy and explored another possible mechanism that overrides WNK and would potentially induce mesial temporal lobe epilepsy. Eventually, we discussed future expectations on medication according to our theory.
Keywords
NKCC1, KCC2, Temporal Lobe Epilepsy, WNK pathway, regulatory mechanism
[1]. Cascino GD. Widespread Neuronal Dysfunction in Temporal Lobe Epilepsy. Epilepsy Curr. 2003 Jan;3(1):31-32. doi: 10.1111/j.1535-7597.2003.03113.x. PMID: 15309105; PMCID: PMC321161.
[2]. Marson AG, Al-Kharusi AM, Alwaidh M, Appleton R, Baker GA, Chadwick DW, Cramp C, Cockerell OC, Cooper PN, Doughty J, Eaton B, Gamble C, Goulding PJ, Howell SJ, Hughes A, Jackson M, Jacoby A, Kellett M, Lawson GR, Leach JP, Nicolaides P, Roberts R, Shackley P, Shen J, Smith DF, Smith PE, Smith CT, Vanoli A, Williamson PR; SANAD Study group. The SANAD study of effectiveness of carbamazepine, gabapentin, lamotrigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet. 2007 Mar 24;369(9566):1000-15. doi: 10.1016/S0140-6736(07)60460-7. PMID: 17382827; PMCID: PMC2080688.
[3]. Plotkin MD, Snyder EY, Hebert SC, Delpire E. Expression of the Na-K-2Cl cotransporter is developmentally regulated in postnatal rat brains: a possible mechanism underlying GABA’s excitatory role in immature brain. J Neurobiol. (1997) 33:781–95. 10.1002/(SICI)1097-4695(19971120)33:6<781::AID-NEU6>3.0.CO;2-5
[4]. Secchi TL, Brondani R, Bragatti JA, Bizzi JWJ, Bianchin MM. Evaluating the Association of Calcified Neurocysticercosis and Mesial Temporal Lobe Epilepsy With Hippocampal Sclerosis in a Large Cohort of Patients With Epilepsy. Front Neurol. 2022 Jan 27;12:769356. doi: 10.3389/fneur.2021.769356. PMID: 35153977; PMCID: PMC8830344.
[5]. Gong C, Wang TW, Huang HS, Parent JM. Reelin regulates neuronal progenitor migration in the intact and epileptic hippocampus. J Neurosci. 2007 Feb 21;27(8):1803-11. doi: 10.1523/JNEUROSCI.3111-06.2007. PMID: 17314278; PMCID: PMC6673551.
[6]. Leifeld J, Förster E, Reiss G, Hamad MIK. Considering the Role of Extracellular Matrix Molecules, in Particular Reelin, in Granule Cell Dispersion Related to Temporal Lobe Epilepsy. Front Cell Dev Biol. 2022 Jun 6;10:917575. doi: 10.3389/fcell.2022.917575. PMID: 35733853; PMCID: PMC9207388.
[7]. Gupta T, Kaur M, Singla N, Radotra BD, Sahni D, Kharbanda PS, Gupta SK. Reelin Signaling Pathway and Mesial Temporal Lobe Epilepsy: A Causative Link. Basic Clin Neurosci. 2023 Jan-Feb;14(1):57-72. doi: 10.32598/bcn.2021.2554.1. Epub 2023 Jan 1. PMID: 37346868; PMCID: PMC10279991.
[8]. Nudelman AS, DiRocco DP, Lambert TJ, Garelick MG, Le J, Nathanson NM, Storm DR. Neuronal activity rapidly induces transcription of the CREB-regulated microRNA-132, in vivo. Hippocampus. 2010 Apr;20(4):492-8. doi: 10.1002/hipo.20646. PMID: 19557767; PMCID: PMC2847008.
[9]. Manna I, Fortunato F, De Benedittis S, Sammarra I, Bertoli G, Labate A, Gambardella A. Non-Coding RNAs: New Biomarkers and Therapeutic Targets for Temporal Lobe Epilepsy. Int J Mol Sci. 2022 Mar 11;23(6):3063. doi: 10.3390/ijms23063063. PMID: 35328484; PMCID: PMC8954985.
[10]. He F, Liu B, Meng Q, Sun Y, Wang W, Wang C. Modulation of miR-146a/complement factor H-mediated inflammatory responses in a rat model of temporal lobe epilepsy. Biosci Rep. 2016 Dec 23;36(6):e00433. doi: 10.1042/BSR20160290. PMID: 27852797; PMCID: PMC5180253.
[11]. Bot AM, Dębski KJ, Lukasiuk K. Alterations in miRNA levels in the dentate gyrus in epileptic rats. PLoS One. 2013 Oct 11;8(10):e76051. doi: 10.1371/journal.pone.0076051. PMID: 24146813; PMCID: PMC3795667.
[12]. Reiss Y, Bauer S, David B, Devraj K, Fidan E, Hattingen E, Liebner S, Melzer N, Meuth SG, Rosenow F, Rüber T, Willems LM, Plate KH. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathol. 2023 Mar;33(2):e13147. doi: 10.1111/bpa.13147. Epub 2023 Jan 4. PMID: 36599709; PMCID: PMC10041171.
[13]. Fleury M, Buck S, Binding LP, Caciagli L, Vos SB, Winston GP, Thompson PJ, Koepp MJ, Duncan JS, Sidhu MK. Episodic memory network connectivity in temporal lobe epilepsy. Epilepsia. 2022 Oct;63(10):2597-2622. doi: 10.1111/epi.17370. Epub 2022 Aug 2. PMID: 35848050; PMCID: PMC9804196.
[14]. O’Keefe J, Krupic J. Do hippocampal pyramidal cells respond to nonspatial stimuli? Physiol Rev. 2021 Jul 1;101(3):1427-1456. doi: 10.1152/physrev.00014.2020. Epub 2021 Feb 16. PMID: 33591856; PMCID: PMC8490123.
[15]. Kurki SN, Uvarov P, Pospelov AS, Trontti K, Hübner AK, Srinivasan R, Watanabe M, Hovatta I, Hübner CA, Kaila K, Virtanen MA. Expression patterns of NKCC1 in neurons and non-neuronal cells during cortico-hippocampal development. Cereb Cortex. 2023 May 9;33(10):5906-5923. doi: 10.1093/cercor/bhac470. PMID: 36573432; PMCID: PMC10183754.
[16]. Liu R, Wang J, Liang S, Zhang G, Yang X. Role of NKCC1 and KCC2 in Epilepsy: From Expression to Function. Front Neurol. 2020 Jan 17;10:1407. doi: 10.3389/fneur.2019.01407. PMID: 32010056; PMCID: PMC6978738.
[17]. Côme E, Blachier S, Gouhier J, Russeau M, Lévi S. Lateral Diffusion of NKCC1 Contributes to Chloride Homeostasis in Neurons and Is Rapidly Regulated by the WNK Signaling Pathway. Cells. 2023 Jan 31;12(3):464. doi: 10.3390/cells12030464. PMID: 36766805; PMCID: PMC9914440.
[18]. Author links open overlay panelAndrew E. Budson M.D. (2015, July 7). Other disorders that cause memory loss or dementia. Memory Loss, Alzheimer’s Disease, and Dementia (Second Edition). https://www.sciencedirect.com/science/article/abs/pii/B9780323286619000147
[19]. Watanabe M, Fukuda A. Development and regulation of chloride homeostasis in the central nervous system. Front Cell Neurosci. 2015 Sep 24;9:371. doi: 10.3389/fncel.2015.00371. PMID: 26441542; PMCID: PMC4585146.
[20]. Côme E, Blachier S, Gouhier J, Russeau M, Lévi S. Lateral Diffusion of NKCC1 Contributes to Chloride Homeostasis in Neurons and Is Rapidly Regulated by the WNK Signaling Pathway. Cells. 2023 Jan 31;12(3):464. doi: 10.3390/cells12030464. PMID: 36766805; PMCID: PMC9914440.
[21]. Josiah, S. S., Meor Azlan, N. F., & Zhang, J. (2021, January 27). Targeting the WNK-SPAK/OSR1 pathway and cation-chloride cotransporters for the therapy of stroke. MDPI. https://www.mdpi.com/1422-0067/22/3/1232
[22]. Sun Q, Wu Y, Jonusaite S, Pleinis JM, Humphreys JM, He H, Schellinger JN, Akella R, Stenesen D, Krämer H, Goldsmith EJ, Rodan AR. Intracellular Chloride and Scaffold Protein Mo25 Cooperatively Regulate Transepithelial Ion Transport through WNK Signaling in the Malpighian Tubule. J Am Soc Nephrol. 2018 May;29(5):1449-1461. doi: 10.1681/ASN.2017101091. Epub 2018 Mar 30. PMID: 29602832; PMCID: PMC5967776.
[23]. Lin SC, Ma C, Chang KJ, Cheong HP, Lee MC, Lan YT, Wang CY, Chiou SH, Huo TI, Hsu TK, Tsai PH, Yang YP. The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis. Biomedicines. 2022 Sep 2;10(9):2169. doi: 10.3390/biomedicines10092169. PMID: 36140271; PMCID: PMC9496095.
[24]. Heise CJ, Xu BE, Deaton SL, Cha SK, Cheng CJ, Earnest S, Sengupta S, Juang YC, Stippec S, Xu Y, Zhao Y, Huang CL, Cobb MH. Serum and glucocorticoid-induced kinase (SGK) 1 and the epithelial sodium channel are regulated by multiple with no lysine (WNK) family members. J Biol Chem. 2010 Aug 13;285(33):25161-7. doi: 10.1074/jbc.M110.103432. Epub 2010 Jun 4. PMID: 20525693; PMCID: PMC2919078.
[25]. Yang XL, Zeng ML, Shao L, Jiang GT, Cheng JJ, Chen TX, Han S, Yin J, Liu WH, He XH, Peng BW. NFAT5 and HIF-1α Coordinate to Regulate NKCC1 Expression in Hippocampal Neurons After Hypoxia-Ischemia. Front Cell Dev Biol. 2019 Dec 13;7:339. doi: 10.3389/fcell.2019.00339. PMID: 31921851; PMCID: PMC6923656.
[26]. Gu W, Zhang W, Lei Y, Cui Y, Chu S, Gu X, Ma Z. Activation of spinal alpha-7 nicotinic acetylcholine receptor shortens the duration of remifentanil-induced postoperative hyperalgesia by upregulating KCC2 in the spinal dorsal horn in rats. Mol Pain. 2017 Jan-Dec;13:1744806917704769. doi: 10.1177/1744806917704769. PMID: 28425312; PMCID: PMC6997724.
Cite this article
Li,Z. (2024). Potential regulatory mechanisms for NKCC1 and KCC2 that induce temporal lobe epilepsy. Theoretical and Natural Science,46,65-71.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 2nd International Conference on Modern Medicine and Global Health
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).