
Environmental risks and etiology for schizophrenia from the lens of neurodevelopment: A literature review
- 1 University of Manchester
* Author to whom correspondence should be addressed.
Abstract
Schizophrenia is a chronic mental disorder marked by positive symptoms such as hallucinations and delusions, negative symptoms including aversion and withdrawal, and cognitive dysfunctions. Despite the preponderance of genetic influences, environmental factors have rarely been singled out in the past literature as significantly contributing to the development of the disorder. This paper focuses on major environmental risk factors, such as prenatal infections and malnutrition, urban living, childhood trauma, and substance abuse, which examines the impact from a neurodevelopmental perspective. Findings from epidemiologic and neuroimaging studies indicate that these environmental factors disrupt crucial neurodevelopmental processes and potentially increase the risk of developing schizophrenia. Neuroimaging advances have provided insights into brain abnormalities associated with schizophrenia that could facilitate early diagnosis and intervention. However, further longitudinal and interdisciplinary studies are currently required to adequately understand the role of environmental factors in the etiology of schizophrenia.
Keywords
Environment factor, Schizophrenia, Neurodevelopment.
[1]. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596
[2]. WHO. (2022). Schizophrenia. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/schizophrenia
[3]. Rasool, S., ZeeshanZafar, M., Ali, Z., & Erum, A. (2018). Schizophrenia: An overview. Clinical Practice, 15(5). https://doi.org/10.4172/clinical-practice.1000417
[4]. DeVylder, J. E. (2016). Preventing Schizophrenia and Severe Mental Illness: A Grand Challenge for Social Work. Research on Social Work Practice, 26(4), 449–459. https://doi.org/10.1177/1049731515622687
[5]. Waro, M. C., & Fitrikasari, A. (2021). Profile of Schizophrenia Aggressiveness with the Risk of Suicide based on the Personality and Social Performance Score. Scientia Psychiatrica, 2(1), Article 1. https://doi.org/10.37275/scipsy.v2i1.27
[6]. Trubetskoy, V., Pardiñas, A. F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T. B., Bryois, J., Chen, C.-Y., Dennison, C. A., Hall, L. S., Lam, M., Watanabe, K., Frei, O., Ge, T., Harwood, J. C., Koopmans, F., Magnusson, S., Richards, A. L., Sidorenko, J., … O’Donovan, M. C. (2022). Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature, 604(7906), 502–508. https://doi.org/10.1038/s41586-022-04434-5
[7]. Brown, A. S. (2011). The environment and susceptibility to schizophrenia. Progress in Neurobiology, 93(1), 23–58. https://doi.org/10.1016/j.pneurobio.2010.09.003
[8]. Jauhar, S., Johnstone, M., & McKenna, P. J. (2022). Schizophrenia. The Lancet, 399(10323), 473–486. https://doi.org/10.1016/S0140-6736(21)01730-X
[9]. Murray, R. M., Bhavsar, V., Tripoli, G., & Howes, O. (2017). 30 Years on: How the Neurodevelopmental Hypothesis of Schizophrenia Morphed Into the Developmental Risk Factor Model of Psychosis. Schizophrenia Bulletin, 43(6), 1190–1196. https://doi.org/10.1093/schbul/sbx121
[10]. McCullumsmith, R. E., Clinton, S. M., & Meador-Woodruff, J. H. (2004). Schizophrenia as a Disorder of Neuroplasticity. In International Review of Neurobiology (Vol. 59, pp. 19–45). Academic Press. https://doi.org/10.1016/S0074-7742(04)59002-5
[11]. Arnold, S. E., Talbot, K., & Hahn, C.-G. (2005). Neurodevelopment, neuroplasticity, and new genes for schizophrenia. In Progress in Brain Research (Vol. 147, pp. 319–345). Elsevier. https://doi.org/10.1016/S0079-6123(04)47023-X
[12]. Vinogradov, S., Chafee, M. V., Lee, E., & Morishita, H. (2023). Psychosis spectrum illnesses as disorders of prefrontal critical period plasticity. Neuropsychopharmacology, 48(1), 168–185. https://doi.org/10.1038/s41386-022-01451-w
[13]. Tran The, J., Magistretti, P. J., & Ansermet, F. (2022). The critical periods of cerebral plasticity: A key aspect in a dialog between psychoanalysis and neuroscience centered on the psychopathology of schizophrenia. Frontiers in Molecular Neuroscience, 15. https://doi.org/10.3389/fnmol.2022.1057539
[14]. Bhandari, A., Voineskos, D., Daskalakis, Z. J., Rajji, T. K., & Blumberger, D. M. (2016). A Review of Impaired Neuroplasticity in Schizophrenia Investigated with Non-invasive Brain Stimulation. Frontiers in Psychiatry, 7. https://doi.org/10.3389/fpsyt.2016.00045
[15]. Balu, D. T., & Coyle, J. T. (2011). Neuroplasticity signaling pathways linked to the pathophysiology of schizophrenia. Neuroscience & Biobehavioral Reviews, 35(3), 848–870. https://doi.org/10.1016/j.neubiorev.2010.10.005
[16]. Fatemi, S. H., & Folsom, T. D. (2009). The Neurodevelopmental Hypothesis of Schizophrenia, Revisited. Schizophrenia Bulletin, 35(3), 528–548. https://doi.org/10.1093/schbul/sbn187
[17]. Selemon, L. D., & Zecevic, N. (2015). Schizophrenia: A tale of two critical periods for prefrontal cortical development. Translational Psychiatry, 5(8), e623–e623. https://doi.org/10.1038/tp.2015.115
[18]. Murray, R. M., Bora, E., Modinos, G., & Vernon, A. (2022). Schizophrenia: A developmental disorder with a risk of non-specific but avoidable decline. Schizophrenia Research, 243, 181–186. https://doi.org/10.1016/j.schres.2022.03.005
[19]. Birnbaum, R., & Weinberger, D. R. (2017). Genetic insights into the neurodevelopmental origins of schizophrenia. Nature Reviews Neuroscience, 18(12), 727–740. https://doi.org/10.1038/nrn.2017.125
[20]. Schepanski, S., Buss, C., Hanganu-Opatz, I. L., & Arck, P. C. (2018). Prenatal Immune and Endocrine Modulators of Offspring’s Brain Development and Cognitive Functions Later in Life. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.02186
[21]. Khandaker, G. M., Zimbron, J., Lewis, G., & Jones, P. B. (2013). Prenatal maternal infection, neurodevelopment and adult schizophrenia: A systematic review of population-based studies. Psychological Medicine, 43(2), 239–257. https://doi.org/10.1017/S0033291712000736
[22]. Brown, A. S. (2006). Prenatal Infection as a Risk Factor for Schizophrenia. Schizophrenia Bulletin, 32(2), 200–202. https://doi.org/10.1093/schbul/sbj052
[23]. Brown, A. S., Begg, M. D., Gravenstein, S., Schaefer, C. A., Wyatt, R. J., Bresnahan, M., Babulas, V. P., & Susser, E. S. (2004). Serologic Evidence of Prenatal Influenza in the Etiology of Schizophrenia. ARCH GEN PSYCHIATRY, 61.
[24]. Clarke, M. C., Tanskanen, A., Huttunen, M., Whittaker, J. C., & Cannon, M. (2009). Evidence for an Interaction Between Familial Liability and Prenatal Exposure to Infection in the Causation of Schizophrenia. Am J Psychiatry.
[25]. Brown, A. S. (2011). Exposure to Prenatal Infection and Risk of Schizophrenia. Frontiers in Psychiatry, 2. https://doi.org/10.3389/fpsyt.2011.00063
[26]. Brown, A. S., & Meyer, U. (2018). Maternal Immune Activation and Neuropsychiatric Illness: A Translational Research Perspective. American Journal of Psychiatry, 175(11), 1073–1083. https://doi.org/10.1176/appi.ajp.2018.17121311
[27]. Cheslack-Postava, K., & Brown, A. S. (2022). Prenatal infection and schizophrenia: A decade of further progress. Schizophrenia Research, 247, 7–15. https://doi.org/10.1016/j.schres.2021.05.014
[28]. Oh-Nishi, A., Obayashi, S., Sugihara, I., Minamimoto, T., & Suhara, T. (2010). Maternal immune activation by polyriboinosinic-polyribocytidilic acid injection produces synaptic dysfunction but not neuronal loss in the hippocampus of juvenile rat offspring. Brain Research, 1363, 170–179. https://doi.org/10.1016/j.brainres.2010.09.054
[29]. Blomström, Å., Karlsson, H., Wicks, S., Yang, S., Yolken, R. H., & Dalman, C. (2012). Maternal antibodies to infectious agents and risk for non-affective psychoses in the offspring—A matched case–control study. Schizophrenia Research, 140(1–3), 25–30. https://doi.org/10.1016/j.schres.2012.06.035
[30]. Mortensen, P. B., Pedersen, C. B., Hougaard, D. M., Nørgaard-Petersen, B., Mors, O., Børglum, A. D., & Yolken, R. H. (2010). A Danish National Birth Cohort study of maternal HSV-2 antibodies as a risk factor for schizophrenia in their offspring. Schizophrenia Research, 122(1–3), 257–263. https://doi.org/10.1016/j.schres.2010.06.010
[31]. Brown, A. S., & Susser, E. S. (2008). Prenatal Nutritional Deficiency and Risk of Adult Schizophrenia. Schizophrenia Bulletin, 34(6), 1054–1063. https://doi.org/10.1093/schbul/sbn096
[32]. Freedman, R., Hunter, S. K., & Hoffman, M. C. (2018). Prenatal Primary Prevention of Mental Illness by Micronutrient Supplements in Pregnancy. American Journal of Psychiatry, 175(7), 607–619. https://doi.org/10.1176/appi.ajp.2018.17070836
[33]. Hoek, H. W., Brown, A. S., & Susser, E. (1998). The Dutch Famine and schizophrenia spectrum disorders. Social Psychiatry and Psychiatric Epidemiology, 33(8), 373–379. https://doi.org/10.1007/s001270050068
[34]. He, P., Chen, G., Guo, C., Wen, X., Song, X., & Zheng, X. (2018). Long-term effect of prenatal exposure to malnutrition on risk of schizophrenia in adulthood: Evidence from the Chinese famine of 1959–1961. European Psychiatry, 51, 42–47. https://doi.org/10.1016/j.eurpsy.2018.01.003
[35]. Brown, A. S., Susser, E. S., Butler, P. D., Andrews, R. R., Kaufmann, C. A., & Gorman, J. M. (1996). Neurobiological Plausibility of Prenatal Nutritional Deprivation as a Risk Factor for Schizophrenia. The Journal of Nervous and Mental Disease, 184(2), 71.
[36]. Hulshoff Pol, H. E., Hoek, H. W., Susser, E., Brown, A. S., Dingemans, A., Schnack, H. G., van Haren, N. E. M., Pereira Ramos, L. M., Gispen-de Wied, C. C., & Kahn, R. S. (2000). Prenatal Exposure to Famine and Brain Morphology in Schizophrenia. American Journal of Psychiatry, 157(7), 1170–1172. https://doi.org/10.1176/appi.ajp.157.7.1170
[37]. Maxwell, A. M., & Rao, R. B. (2022). Perinatal iron deficiency as an early risk factor for schizophrenia. Nutritional Neuroscience, 25(10), 2218–2227. https://doi.org/10.1080/1028415X.2021.1943996
[38]. Zammit, S., Lewis, S., Gunnell, D., & Smith, G. D. (2007). Schizophrenia and Neural Tube Defects: Comparisons From an Epidemiological Perspective. Schizophrenia Bulletin, 33(4), 853–858. https://doi.org/10.1093/schbul/sbl041
[39]. Abrahamyan Empson, L., Baumann, P. S., Söderström, O., Codeluppi, Z., Söderström, D., & Conus, P. (2020). Urbanicity: The need for new avenues to explore the link between urban living and psychosis. Early Intervention in Psychiatry, 14(4), 398–409. https://doi.org/10.1111/eip.12861
[40]. Haddad, L., Schafer, A., Streit, F., Lederbogen, F., Grimm, O., Wust, S., Deuschle, M., Kirsch, P., Tost, H., & Meyer-Lindenberg, A. (2015). Brain Structure Correlates of Urban Upbringing, an Environmental Risk Factor for Schizophrenia. Schizophrenia Bulletin, 41(1), 115–122. https://doi.org/10.1093/schbul/sbu072
[41]. McKenzie, K., Murray, A., & Booth, T. (2013). Do urban environments increase the risk of anxiety, depression and psychosis? An epidemiological study. Journal of Affective Disorders, 150(3), 1019–1024. https://doi.org/10.1016/j.jad.2013.05.032
[42]. Marcelis, M., Takei, N., & Van Os, J. (1999). Urbanization and risk for schizophrenia: Does the effect operate before or around the time of illness onset? Psychological Medicine, 29(5), 1197–1203. https://doi.org/10.1017/S0033291799008983
[43]. Jaaro-Peled, H., & Sawa, A. (2020). Neurodevelopmental Factors in Schizophrenia. Psychiatric Clinics of North America, 43(2), 263–274. https://doi.org/10.1016/j.psc.2020.02.010
[44]. Kirkbride, J. B., & Jones, P. B. (2011). The Prevention of Schizophrenia—What Can We Learn From Eco-Epidemiology? Schizophrenia Bulletin, 37(2), 262–271. https://doi.org/10.1093/schbul/sbq120
[45]. Costa E Silva, J. A., & Steffen, R. E. (2019). Urban environment and psychiatric disorders: A review of the neuroscience and biology. Metabolism, 100, 153940. https://doi.org/10.1016/j.metabol.2019.07.004
[46]. Söderström, O., Empson, L. A., Codeluppi, Z., Söderström, D., Baumann, P. S., & Conus, P. (2016). Unpacking ‘the City’: An experience-based approach to the role of urban living in psychosis. Health & Place, 42, 104–110. https://doi.org/10.1016/j.healthplace.2016.09.002
[47]. Howes, O. D., & Murray, R. M. (2014). Schizophrenia: An integrated sociodevelopmental-cognitive model. The Lancet, 383(9929), 1677–1687. https://doi.org/10.1016/S0140-6736(13)62036-X
[48]. Aas, M., Dazzan, P., Mondelli, V., Melle, I., Murray, R. M., & Pariante, C. M. (2014). A Systematic Review of Cognitive Function in First-Episode Psychosis, Including a Discussion on Childhood Trauma, Stress, and Inflammation. Frontiers in Psychiatry, 4. https://doi.org/10.3389/fpsyt.2013.00182
[49]. Vargas, T., Lam, P. H., Azis, M., Osborne, K. J., Lieberman, A., & Mittal, V. A. (2019). Childhood Trauma and Neurocognition in Adults With Psychotic Disorders: A Systematic Review and Meta-analysis. Schizophrenia Bulletin, 45(6), 1195–1208. https://doi.org/10.1093/schbul/sby150
[50]. Inyang, B., Gondal, F. J., Abah, G. A., Minnal Dhandapani, M., Manne, M., Khanna, M., Challa, S., Kabeil, A. S., & Mohammed, L. (2022). The Role of Childhood Trauma in Psychosis and Schizophrenia: A Systematic Review. Cureus. https://doi.org/10.7759/cureus.21466
[51]. Read, J., Fosse, R., Moskowitz, A., & Perry, B. (2014). The traumagenic neurodevelopmental model of psychosis revisited. Neuropsychiatry, 4(1), 65–79. https://doi.org/10.2217/npy.13.89
[52]. Cancel, A., Dallel, S., Zine, A., El-Hage, W., & Fakra, E. (2019). Understanding the link between childhood trauma and schizophrenia: A systematic review of neuroimaging studies. Neuroscience & Biobehavioral Reviews, 107, 492–504. https://doi.org/10.1016/j.neubiorev.2019.05.024
[53]. Holtzman, C. W., Trotman, H. D., Goulding, S. M., Ryan, A. T., MacDonald, A. N., Shapiro, D. I., Brasfield, J. L., & Walker, E. F. (2013). Stress and neurodevelopmental processes in the emergence of psychosis. Neuroscience, 249, 172–191. https://doi.org/10.1016/j.neuroscience.2012.12.017
[54]. Read, J., van Os, J., Morrison, A. P., & Ross, C. A. (2005). Childhood trauma, psychosis and schizophrenia: A literature review with theoretical and clinical implications. Acta Psychiatrica Scandinavica, 112(5), 330–350. https://doi.org/10.1111/j.1600-0447.2005.00634.x
[55]. Ruby, E., Polito, S., McMahon, K., Gorovitz, M., Corcoran, C., & Malaspina, D. (2014). Pathways Associating Childhood Trauma to the Neurobiology of Schizophrenia. Frontiers in Psychological and Behavioral Science, 3(1), 1–17.
[56]. Hunt, G. E., Large, M. M., Cleary, M., Lai, H. M. X., & Saunders, J. B. (2018). Prevalence of comorbid substance use in schizophrenia spectrum disorders in community and clinical settings, 1990–2017: Systematic review and meta-analysis. Drug and Alcohol Dependence, 191, 234–258. https://doi.org/10.1016/j.drugalcdep.2018.07.011
[57]. Yücel, M., Bora, E., Lubman, D. I., Solowij, N., Brewer, W. J., Cotton, S. M., Conus, P., Takagi, M. J., Fornito, A., Wood, S. J., McGorry, P. D., & Pantelis, C. (2012). The Impact of Cannabis Use on Cognitive Functioning in Patients With Schizophrenia: A Meta-analysis of Existing Findings and New Data in a First-Episode Sample. Schizophrenia Bulletin, 38(2), 316–330. https://doi.org/10.1093/schbul/sbq079
[58]. Khokhar, J. Y., Dwiel, L. L., Henricks, A. M., Doucette, W. T., & Green, A. I. (2018). The link between schizophrenia and substance use disorder: A unifying hypothesis. Schizophrenia Research, 194, 78–85. https://doi.org/10.1016/j.schres.2017.04.016
[59]. Margolese, H. C., Malchy, L., Negrete, J. C., Tempier, R., & Gill, K. (2004). Drug and alcohol use among patients with schizophrenia and related psychoses: Levels and consequences. Schizophrenia Research, 67(2–3), 157–166. https://doi.org/10.1016/S0920-9964(02)00523-6
[60]. Asher, C. J., & Gask, L. (2010). Reasons for illicit drug use in people with schizophrenia: Qualitative study. BMC Psychiatry, 10(1), 94. https://doi.org/10.1186/1471-244X-10-94
[61]. Green, A. I. (2005). Schizophrenia and comorbid substance use disorder: Effects of antipsychotics. The Journal of Clinical Psychiatry, 66 Suppl 6, 21–26.
[62]. Drake, R. E., Xie, H., McHugo, G. J., & Green, A. I. (2000). The Effects of Clozapine on Alcohol and Drug Use Disorders Among Patients With Schizophrenia. Schizophrenia Bulletin, 26(2), 441–449. https://doi.org/10.1093/oxfordjournals.schbul.a033464
[63]. Leucht, S., Leucht, C., Huhn, M., Chaimani, A., Mavridis, D., Helfer, B., Samara, M., Rabaioli, M., Bächer, S., Cipriani, A., Geddes, J. R., Salanti, G., & Davis, J. M. (2017). Sixty Years of Placebo-Controlled Antipsychotic Drug Trials in Acute Schizophrenia: Systematic Review, Bayesian Meta-Analysis, and Meta-Regression of Efficacy Predictors. American Journal of Psychiatry, 174(10), 927–942. https://doi.org/10.1176/appi.ajp.2017.16121358
[64]. Lally, J., & MacCabe, J. H. (2015). Antipsychotic medication in schizophrenia: A review. British Medical Bulletin, 114(1), 169–179. https://doi.org/10.1093/bmb/ldv017
[65]. De Peri, L., Deste, G., & Vita, A. (2021). Strucutural brain imaging at the onset of schizophrenia:What have we learned and what have we missed. Psychiatry Research, 301, 113962. https://doi.org/10.1016/j.psychres.2021.113962
[66]. Mcguire, P., Howes, O., Stone, J., & Fusarpoli, P. (2008). Functional neuroimaging in schizophrenia: Diagnosis and drug discovery. Trends in Pharmacological Sciences, 29(2), 91–98. https://doi.org/10.1016/j.tips.2007.11.005[66] Mcguire, P., Howes, O., Stone, J., & Fusarpoli, P. (2008). Functional neuroimaging in schizophrenia: Diagnosis and drug discovery. Trends in Pharmacological Sciences, 29(2), 91–98. https://doi.org/10.1016/j.tips.2007.11.005
[67]. Frangou, S., & Murray, R. M. (1996). Imaging as a tool in exploring the neurodevelopment and genetics of schizophrenia. British Medical Bulletin, 52(3), 587–596. https://doi.org/10.1093/oxfordjournals.bmb.a011569
[68]. Baribeau, D. A., & Anagnostou, E. (2013). A Comparison of Neuroimaging Findings in Childhood Onset Schizophrenia and Autism Spectrum Disorder: A Review of the Literature. Frontiers in Psychiatry, 4. https://doi.org/10.3389/fpsyt.2013.00175
[69]. Howes, O. D., Cummings, C., Chapman, G. E., & Shatalina, E. (2023). Neuroimaging in schizophrenia: An overview of findings and their implications for synaptic changes. Neuropsychopharmacology, 48(1), 151–167. https://doi.org/10.1038/s41386-022-01426-x[69] Howes, O. D., Cummings, C., Chapman, G. E., & Shatalina, E. (2023). Neuroimaging in schizophrenia: An overview of findings and their implications for synaptic changes. Neuropsychopharmacology, 48(1), 151–167. https://doi.org/10.1038/s41386-022-01426-x
[70]. Sugranyes, G., De La Serna, E., Borras, R., Sanchez-Gistau, V., Pariente, J. C., Romero, S., Baeza, I., Díaz-Caneja, C. M., Rodriguez-Toscano, E., Moreno, C., Bernardo, M., Moreno, D., Vieta, E., & Castro-Fornieles, J. (2017). Clinical, Cognitive, and Neuroimaging Evidence of a Neurodevelopmental Continuum in Offspring of Probands With Schizophrenia and Bipolar Disorder. Schizophrenia Bulletin, 43(6), 1208–1219. https://doi.org/10.1093/schbul/sbx002
[71]. Kraguljac, N. V., McDonald, W. M., Widge, A. S., Rodriguez, C. I., Tohen, M., & Nemeroff, C. B. (2021). Neuroimaging Biomarkers in Schizophrenia. American Journal of Psychiatry, 178(6), 509–521. https://doi.org/10.1176/appi.ajp.2020.20030340
[72]. Tarcijonas, G., & Sarpal, D. K. (2019). Neuroimaging markers of antipsychotic treatment response in schizophrenia: An overview of magnetic resonance imaging studies. Neurobiology of Disease, 131, 104209. https://doi.org/10.1016/j.nbd.2018.06.021
[73]. Campos, C., Santos, S., Gagen, E., Machado, S., Rocha, S., Kurtz, M. M., & Rocha, N. B. (2016). Neuroplastic Changes Following Social Cognition Training in Schizophrenia: A Systematic Review. Neuropsychology Review, 26(3), 310–328. https://doi.org/10.1007/s11065-016-9326-0
Cite this article
Wu,B. (2024). Environmental risks and etiology for schizophrenia from the lens of neurodevelopment: A literature review. Theoretical and Natural Science,60,71-81.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 4th International Conference on Biological Engineering and Medical Science
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).