Research Article
Open access
Published on 6 December 2024
Download pdf
Wang,Y.(. (2024). The analysis of whether CRISPR-Cas9 is the way forward for Alzheimer’s disease treatment. Theoretical and Natural Science,66,30-36.
Export citation

The analysis of whether CRISPR-Cas9 is the way forward for Alzheimer’s disease treatment

Yijin (Elsa) Wang *,1,
  • 1 Alice Smith School

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2753-8818/2024.18034

Abstract

Alzheimer's disease (AD) is a progressive and irreversible neurological condition which according to WHO affects more than 55 million individuals globally and is the leading cause of dementia and thereby poses a significant burden on healthcare systems worldwide. AD progresses through stages of mild cognitive impairment to severe dementia and is characterised by the accumulation of extracellular amyloid-beta plaques and neurofibrillary tangles concentrated with tau proteins in neocortical structures and the temporal lobe. Gene-editing technology such as the most prevalent CRISPR-Cas9 provides prospects for the treatment of AD by enabling precise modifications of the genetic mutations associated with the disease. This review explores the potential of CRISPR-Cas9 to revolutionise treatment by targeting and rectifying mutated genes but also examines the current state of Alzheimer’s treatment. This paper examines recent advancements in preclinical studies and highlights the successes in reducing amyloid-beta plaques and tau neurofibrillary tangles, the pathological features of AD. By evaluating current CRISPR-Cas9 research and other treatments for AD, I aim to provide insight into its potential as a transformative gene therapy approach whilst evaluating its limitations.

Keywords

Alzheimer’s disease, CRISPR-Cas 9, gene editing, amyloid-beta plaques, tau neurofibrillary tangles

[1]. Asmamaw, M., & Zawdie, B. (2021). Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics : targets & therapy, 15, 353–361. https://doi.org/10.2147/BTT.S326422

[2]. Bharathkumar, N., Sunil, A., Meera, P. et al. CRISPR/Cas-Based Modifications for Therapeutic Applications: A Review. Mol Biotechnol 64, 355–372 (2022). https://doi.org/10.1007/s12033-021-00422-8

[3]. György, B., Lööv, C., Zaborowski, M. P., Takeda, S., Kleinstiver, B. P., Commins, C., Kastanenka, K., Mu, D., Volak, A., Giedraitis, V., Lannfelt, L., Maguire, C. A., Joung, J. K., Hyman, B. T., Breakefield, X. O., & Ingelsson, M. (2018). CRISPR/Cas9 Mediated Disruption of the Swedish APP Allele as a Therapeutic Approach for Early-Onset Alzheimer's Disease. Molecular therapy. Nucleic acids, 11, 429–440. https://doi.org/10.1016/j.omtn.2018.03.007

[4]. Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021). Alzheimer's disease. Lancet (London, England), 397(10284), 1577–1590. https://doi.org/10.1016/S0140-6736(20)32205-4

[5]. Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science (New York, N.Y.), 297(5580), 353–356. https://doi.org/10.1126/science.1072994

[6]. Pandey, G., & Ramakrishnan, V. (2020). Invasive and non-invasive therapies for Alzheimer's disease and other amyloidosis. Biophysical reviews, 12(5), 1175–1186. 111`q aXhttps://doi.org/10.1007/s12551-020-00752-y

[7]. Selkoe, D. J., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO molecular medicine, 8(6), 595–608. https://doi.org/10.15252/emmm.201606210

[8]. Haass, C., & Selkoe, D. J. (2007). Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nature reviews. Molecular cell biology, 8(2), 101–112. https://doi.org/10.1038/nrm2101

[9]. Ren Z, Yang H, Zhu C, Fan D, Deng J. (2023). Dietary phytochemicals: As a potential natural source for treatment of Alzheimer's Disease. Food Innovation and Advances 2(1):36−43 doi: 10.48130/FIA-2023-0007

[10]. Clavaguera, F., Bolmont, T., Crowther, R. A., Abramowski, D., Frank, S., Probst, A., Fraser, G., Stalder, A. K., Beibel, M., Staufenbiel, M., Jucker, M., Goedert, M., & Tolnay, M. (2009). Transmission and spreading of tauopathy in transgenic mouse brain. Nature cell biology, 11(7), 909–913. https://doi.org/10.1038/ncb1901

[11]. Guyon, N., Zacharias, L. R., van Lunteren, J. A., Immenschuh, J., Fuzik, J., Märtin, A., Xuan, Y., Zilberter, M., Kim, H., Meletis, K., Lopes-Aguiar, C., & Carlén, M. (2021). Adult trkB Signaling in Parvalbumin Interneurons is Essential to Prefrontal Network Dynamics. The Journal of neuroscience : the official journal of the Society for Neuroscience, 41(14), 3120–3141. https://doi.org/10.1523/JNEUROSCI.1848-20.2021

[12]. Park, H., Shin, J., Kim, Y., Saito, T., Saido, T. C., & Kim, J. (2022). CRISPR/dCas9-Dnmt3a-mediated targeted DNA methylation of APP rescues brain pathology in a mouse model of Alzheimer's disease. Translational neurodegeneration, 11(1), 41. https://doi.org/10.1186/s40035-022-00314-0

[13]. Sun, J., Carlson-Stevermer, J., Das, U., Shen, M., Delenclos, M., Snead, A. M., Koo, S. Y., Wang, L., Qiao, D., Loi, J., Petersen, A. J., Stockton, M., Bhattacharyya, A., Jones, M. V., Zhao, X., McLean, P. J., Sproul, A. A., Saha, K., & Roy, S. (2019). CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nature communications, 10(1), 53. https://doi.org/10.1038/s41467-018-07971-8

[14]. Wadhwani, A. R., Affaneh, A., Van Gulden, S., & Kessler, J. A. (2019). Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease. Annals of neurology, 85(5), 726–739. https://doi.org/10.1002/ana.25455

[15]. D. Offen, R. Rabinowitz, D. Michaelson, T. Ben-Zur. (2018). Towards gene-editing treatment for Alzheimer’s disease: ApoE4 allele-specific knockout using a CRISPR cas9 variant Cytotherapy, 20 (5), p. S18

[16]. Konstantinidis, E., Molisak, A., Perrin, F., Streubel-Gallasch, L., Fayad, S., Kim, D. Y., Petri, K., Aryee, M. J., Aguilar, X., György, B., Giedraitis, V., Joung, J. K., Pattanayak, V., Essand, M., Erlandsson, A., Berezovska, O., & Ingelsson, M. (2022). CRISPR-Cas9 treatment partially restores amyloid-β 42/40 in human fibroblasts with the Alzheimer's disease PSEN1 M146L mutation. Molecular therapy. Nucleic acids, 28, 450–461. https://doi.org/10.1016/j.omtn.2022.03.022

[17]. Gee, M. S., Kwon, E., Song, M. H., Jeon, S. H., Kim, N., Lee, J. K., & Koo, T. (2024). CRISPR base editing-mediated correction of a tau mutation rescues cognitive decline in a mouse model of tauopathy. Translational neurodegeneration, 13(1), 21. https://doi.org/10.1186/s40035-024-00415-y

[18]. Rosenblum, D., Gutkin, A., Kedmi, R., Ramishetti, S., Veiga, N., Jacobi, A. M., Schubert, M. S., Friedmann-Morvinski, D., Cohen, Z. R., Behlke, M. A., Lieberman, J., & Peer, D. (2020). CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy. Science advances, 6(47), eabc9450. https://doi.org/10.1126/sciadv.abc9450

[19]. Kim, C. K., Lee, Y. R., Ong, L., Gold, M., Kalali, A., & Sarkar, J. (2022). Alzheimer's Disease: Key Insights from Two Decades of Clinical Trial Failures. Journal of Alzheimer's disease : JAD, 87(1), 83–100. https://doi.org/10.3233/JAD-215699

[20]. Birks J. (2006). Cholinesterase inhibitors for Alzheimer's disease. The Cochrane database of systematic reviews, 2006(1), CD005593. https://doi.org/10.1002/14651858.CD005593

[21]. Salloway, S., Chalkias, S., Barkhof, F., Burkett, P., Barakos, J., Purcell, D., Suhy, J., Forrestal, F., Tian, Y., Umans, K., Wang, G., Singhal, P., Budd Haeberlein, S., & Smirnakis, K. (2022). Amyloid-Related Imaging Abnormalities in 2 Phase 3 Studies Evaluating Aducanumab in Patients With Early Alzheimer Disease. JAMA neurology, 79(1), 13–21. https://doi.org/10.1001/jamaneurol.2021.4161

[22]. van Dyck, C. H., Swanson, C. J., Aisen, P., Bateman, R. J., Chen, C., Gee, M., Kanekiyo, M., Li, D., Reyderman, L., Cohen, S., Froelich, L., Katayama, S., Sabbagh, M., Vellas, B., Watson, D., Dhadda, S., Irizarry, M., Kramer, L. D., & Iwatsubo, T. (2023). Lecanemab in Early Alzheimer's Disease. The New England journal of medicine, 388(1), 9–21. https://doi.org/10.1056/NEJMoa2212948

Cite this article

Wang,Y.(. (2024). The analysis of whether CRISPR-Cas9 is the way forward for Alzheimer’s disease treatment. Theoretical and Natural Science,66,30-36.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 4th International Conference on Biological Engineering and Medical Science

Conference website: https://2024.icbiomed.org/
ISBN:978-1-83558-763-8(Print) / 978-1-83558-764-5(Online)
Conference date: 25 October 2024
Editor:Alan Wang
Series: Theoretical and Natural Science
Volume number: Vol.66
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).