Research Article
Open access
Published on 15 January 2025
Download pdf
Li,Z. (2025).CRISPR/Cas9-Enhanced CAR-T Cell Therapy for Hematological Malignancies.Theoretical and Natural Science,90,88-94.
Export citation

CRISPR/Cas9-Enhanced CAR-T Cell Therapy for Hematological Malignancies

Zewan Li *,1,
  • 1 University of British Columbia, British Columbia, Canada

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2753-8818/2025.GU20456

Abstract

CRISPR/Cas9 technology has brought revolution to the field of gene editing, offering precise and efficient tools for genetic modifications. One of its most promising applications lies in improving CAR-T cell therapy for treating hematological malignancies. Among approaches to treating blood cancers, CAR-T therapy, which programs T cells to recognize and eliminate cancer cells, has shown some success for B-cell malignancies such as diffuse large B-cell lymphoma (DLBCL) and B-cell acute lymphoblastic leukemia (ALL). However, challenges such as immune evasion, cytokine release syndrome (CRS), neurotoxicity, and limited CAR-T persistence remain significant barriers. CRISPR/Cas9 can optimize CAR-T therapy by precisely inserting CAR genes into specific loci, knocking out inhibitory genes like PD-1 to enhance persistence, and enabling multi-targeting strategies to overcome tumor immune escape. Clinical trials demonstrate the feasibility and potential of CRISPR-edited CAR-T cells, showing improved safety, durability, and efficacy. This study explores the synergistic application of CRISPR/Cas9 in CAR-T therapy, addressing its current limitations and providing a pathway to safer and more effective treatments for hematological malignancies

Keywords

CRISPR/Cas9, hematological malignancies, CAR-T therapy, immune evasion

[1]. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816-821.

[2]. Haselkorn, R. (2018). A crack at CRISPR A crack in creation: Gene editing and the unthinkable power to control evolution by jennifer A. doudna and samuel H. sternberg houghton mifflin harcourt, boston, 2017. The FASEB Journal, 32(1), 3-4.

[3]. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature Protocols, 8(11), 2281-2308.

[4]. June, C. H., O'Connor, R. S., Kawalekar, O. U., Ghassemi, S., & Milone, M. C. (2018). CAR-T cell immunotherapy for human cancer. Science, 359(6382), 1361-1365.

[5]. Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., ... & Grupp, S. A. (2018). Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. New England Journal of Medicine, 378(5), 439-448.

[6]. Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., ... & Westin, J. R. (2017). Axicabtagene ciloleucel CAR-T cell therapy in refractory large B-cell lymphoma. New England Journal of Medicine, 377(26), 2531-2544.

[7]. Roberts, Z. J., Better, M., Bot, A., & Drobyski, W. R. (2018). Axicabtagene ciloleucel, a first-in-class CAR-T cell therapy for aggressive NHL. Leukemia & Lymphoma, 59(7), 1785-1796.

[8]. Brudno, J. N., & Kochenderfer, J. N. (2019). Recent advances in CAR-T cell toxicity: Mechanisms, manifestations, and management. Blood Reviews, 34, 45-55.

[9]. Locke, F. L., Ghobadi, A., Jacobson, C. A., Miklos, D. B., Lekakis, L. J., Oluwole, O. O., ... & Go, W. Y. (2019). Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): A single-arm, multicentre, phase 1-2 trial. The Lancet Oncology, 20(1), 31-42.

[10]. Rafiq, S., Hackett, C. S., & Brentjens, R. J. (2020). Engineering strategies to overcome the current roadblocks in CAR-T cell therapy. Nature Reviews Clinical Oncology, 17(3), 147-167.

[11]. Ren, J., & Zhang, X. (2020). CRISPR/Cas9 for cancer research and therapy. Seminars in Cancer Biology, 55, 21-27.

[12]. Stadtmauer, E. A., Fraietta, J. A., Davis, M. M., Cohen, A. D., Weber, K. L., Lancaster, E., ... & June, C. H. (2020). CRISPR-engineered T cells in patients with refractory cancer. Science, 367(6481), eaba7365.

[13]. Sather, B. D., Romano, Ibarra, G. S., Sommer, K., Curinga, G., Hale, M., Khan, I. F., ... & Rawlings, D. J. (2015). Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Science Translational Medicine, 7(307), 307ra156.

[14]. Akbari Kordkheyli, V., Rashidi, M., Shokri, Y., Fallahpour, S., Variji, A., Nabipour Ghara, E., & Hosseini, S. M. (2022). CRISPR/CAS system, a novel tool of targeted therapy of drug-resistant lung cancer. Advanced Pharmaceutical Bulletin, 12(2), 262-273.

[15]. Wellhausen, N., O’Connell, R. P., Lesch, S., Engel, N. W., Rennels, A. K., Gonzales, D., ... & Gill, S. I. (2023). Epitope base editing CD45 in hematopoietic cells enables universal blood cancer immune therapy. Science Translational Medicine, 15(714), eadi1145.

[16]. Izmiryan, A., Berthault, C., Gouin, O., Chen, M., Woodley, D., & Gaucher, S. (2020). Efficient ex-vivo COL7A1 correction of patient’s primary keratinocytes and fibroblasts using RNP-based CRISPR/Cas9 and homology-directed repair to treat recessive dystrophic epidermolysis bullosa. INSERM 1163-Imagine Institute for Genetic Diseases.

[17]. Hagen, M., Wirsching, A., Bohr, D., Taubmann, J., Müller, F., Mackensen, A., ... & Schett, G. (2024). CAR-T cell therapy in rheumatology: Current knowledge and perspectives. Zeitschrift für Rheumatologie, 83(6), 485-491.

[18]. Baumgartner, K., Bethge, W., Reinert, C. P., Bender, B., Nikolaou, K., & Horger, M. (2022). Bildgebende befunde assoziierter komplikationen der CAR-T-zell-therapie. RöFo : Fortschritte Auf Dem Gebiet Der Röntgenstrahlen Und Der Bildgebende Verfahren, 194(7), 699-704.

[19]. KYMRIAH® (tisagenlecleucel) [Prescribing Information]. (2024). Novartis Pharmaceuticals Corporation.

[20]. YESCARTA® (axicabtagene ciloleucel) [Prescribing Information]. (2024). Kite Pharma, Inc.

[21]. Eyquem, J., Mansilla-Soto, J., Giavridis, T., van der Stegen, S. J., Hamieh, M., Cunanan, K. M., ... & Sadelain, M. (2017). Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature, 543(7643), 113-117.

Cite this article

Li,Z. (2025).CRISPR/Cas9-Enhanced CAR-T Cell Therapy for Hematological Malignancies.Theoretical and Natural Science,90,88-94.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content

About volume

Volume title: Proceedings of ICMMGH 2025 Workshop: Computational Modelling in Biology and Medicine

Conference website: https://2025.icmmgh.org/
ISBN:(Print) / (Online)
Conference date: 10 January 2025
Editor:Sheiladevi Sukumaran, Roman Bauer
Series: Theoretical and Natural Science
Volume number: Vol.90
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).