Research Article
Open access
Published on 13 March 2025
Download pdf
Zhao,A. (2025). Review of Quantum Dots-Based Biosensor Systems: Construction and Applications. Theoretical and Natural Science,98,16-23.
Export citation

Review of Quantum Dots-Based Biosensor Systems: Construction and Applications

Aurora Zhao *,1,
  • 1 West Essex High School, North Caldwell, New Jersey, United States of America

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2753-8818/2025.21455

Abstract

Quantum dots (QDs), a class of zero-dimensional nanomaterials with exceptional fluorescent properties, have emerged as a key component in biosensors. Biosensors are sophisticated devices that measure biological properties and convert them into electrical signals, comprising components such as the analyte, bioreceptor, transducer, electronics, display, and power source. Compared to traditional methods, QDs are more sensitive, less likely to suffer from photobleaching, and customizable. This review explains the properties of QDs, their synthesis methods, and the integration of QDs into biosensors. Additionally, it delves into the various applications of quantum dots-based biosensors, providing a brief overview of multiple QD biosensors, including their use in detecting cancer, coronavirus, tuberculosis, and salmonella. Despite their significant potential, the toxicity of QDs, particularly those composed of heavy metals, poses challenges for their broader application and can harm organisms after entering the environment. Finally, the paper discusses future trends in the development of quantum dot biosensors, such as more carbon QDs, greener synthesis, and more QD sensors. This paper provides information that can be used to improve future QD biosensors.

Keywords

quantum dots, biosensors, cancer detection, sensors, coronavirus detection

[1]. Javaid, M.​, Haleem, A.​, Rab, S.​, Pratap Singh, R.​, &​ Suman, R.​ (2021).​ Sensors for daily life:​ A review.​ Sensors International, 2, 100121.​ https:​/​/​doi.​org/​10.​1016/​j.​sintl.​2021.​100121

[2]. Naresh, Varnakavi.​, &​ Lee, N.​ (2021).​ A Review on Biosensors and Recent Development of Nanostructured Materials-​Enabled Biosensors.​ Sensors, 21(4), 1109.​ https:​/​/​doi.​org/​10.​3390/​s21041109

[3]. Yang, F.​, Jin, C.​, Subedi, S.​, Lee, C.​ L.​, Wang, Q.​, Jiang, Y.​, Li, J.​, Di, Y.​, &​ Fu, D.​ (2012).​ Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment.​ Cancer Treatment Reviews, 38(6), 566–579.​ https:​/​/​doi.​org/​10.​1016/​j.​ctrv.​2012.​02.​003

[4]. Jessy Mercy, D.​, Girigoswami, K.​, &​ Girigoswami, A.​ (2024).​ A mini review on biosensor advancements-​emphasis on quantum dots.​ Results in Chemistry, 7, 101271.​ https:​/​/​doi.​org/​10.​1016/​j.​rechem.​2023.​101271

[5]. Safari, M.​ (2023).​ Recent Advances in Quantum Dots-​Based Biosensors.​ In J.​ Thirumalai (Ed.​), Quantum Dots—Recent Advances, New Perspectives and Contemporary Applications.​ IntechOpen.​ https:​/​/​doi.​org/​10.​5772/​intechopen.​108205

[6]. Maxwell, T.​, Nogueira Campos, M.​ G.​, Smith, S.​, Doomra, M.​, Thwin, Z.​, &​ Santra, S.​ (2020).​ Quantum Dots.​ In Nanoparticles for Biomedical Applications (pp.​ 243–265).​ Elsevier.​ https:​/​/​doi.​org/​10.​1016/​B978-​0-​12-​816662-​8.​00015-​1

[7]. Sapsford, K.​ E.​, Pons, T.​, Medintz, I.​ L.​, &​ Mattoussi, H.​ (2006).​ Biosensing with Luminescent Semiconductor Quantum Dots.​ Sensors, 6(8), 925–953.​ https:​/​/​doi.​org/​10.​3390/​s6080925

[8]. Joglekar, P.​ V.​, Mandalkar, D.​ J.​, Nikam, M.​ A.​, Pande, N.​ S.​, &​ Dubal, A.​ (2019).​ Review article on Quantum Dots:​ Synthesis, Properties and Application.​ International Journal of Research in Advent Technology.​ https:​/​/​www.​ijrat.​org/​downloads/​Vol-​7/​jan-​2019/​Paper%​20ID-​712019113.​pdf

[9]. Pourmadadi, M.​, Rahmani, E.​, Rajabzadeh-​Khosroshahi, M.​, Samadi, A.​, Behzadmehr, R.​, Rahdar, A.​, &​ Ferreira, L.​ F.​ R.​ (2023).​ Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection:​ A comprehensive review.​ Journal of Drug Delivery Science and Technology, 80, 104156.​ https:​/​/​doi.​org/​10.​1016/​j.​jddst.​2023.​104156

[10]. Ding, R.​, Chen, Y.​, Wang, Q.​, Wu, Z.​, Zhang, X.​, Li, B.​, &​ Lin, L.​ (2022).​ Recent advances in quantum dots-​based biosensors for antibiotics detection.​ Journal of Pharmaceutical Analysis, 12(3), 355–364.​ https:​/​/​doi.​org/​10.​1016/​j.​jpha.​2021.​08.​002

[11]. Sapsford, K.​ E.​, Pons, T.​, Medintz, I.​ L.​, &​ Mattoussi, H.​ (2006).​ Biosensing with Luminescent Semiconductor Quantum Dots.​ Sensors, 6(8), 925–953.​ https:​/​/​doi.​org/​10.​3390/​s6080925

[12]. Li, S.​, Jang, J.​ H.​, Chung, W.​, Seung, H.​, Park, S.​ I.​, Ma, H.​, Pyo, W.​ J.​, Choi, C.​, Chung, D.​ S.​, Kim, D.​-​H.​, Choi, M.​ K.​, &​ Yang, J.​ (2023).​ Ultrathin Self-​Powered Heavy-​Metal-​Free Cu–In–Se Quantum Dot Photodetectors for Wearable Health Monitoring.​ ACS Nano, 17(20), 20013–20023.​ https:​/​/​doi.​org/​10.​1021/​acsnano.​3c05178

[13]. Cui, F.​, Ji, J.​, Sun, J.​, Wang, J.​, Wang, H.​, Zhang, Y.​, Ding, H.​, Lu, Y.​, Xu, D.​, &​ Sun, X.​ (2019).​ A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells.​ Analytical and Bioanalytical Chemistry, 411(5), 985–995.​ https:​/​/​doi.​org/​10.​1007/​s00216-​018-​1501-​0

[14]. Liu, J.​, Chen, J.​, Zhou, C.​, &​ Su, X.​ (2025).​ Dual-​signal biosensor based on G-​quadruplex/​hemin DNAzyme and zinc-​doped molybdenum disulfide quantum dots for ultrasensitive detection of tumor biomarker.​ Talanta, 283, 127179.​ https:​/​/​doi.​org/​10.​1016/​j.​talanta.​2024.​127179

[15]. Kalkal, A.​, Pradhan, R.​, Kadian, S.​, Manik, G.​, &​ Packirisamy, G.​ (2020).​ Biofunctionalized Graphene Quantum Dots Based Fluorescent Biosensor toward Efficient Detection of Small Cell Lung Cancer.​ ACS Applied Bio Materials, 3(8), 4922–4932.​ https:​/​/​doi.​org/​10.​1021/​acsabm.​0c00427

[16]. Liu, M.​, Yu, W.​, Zhao, N.​, Qiu, J.​-​G.​, Jiang, B.​-​H.​, Zhang, Y.​, &​ Zhang, C.​ (2023).​ Development of a N6-​methyladenosine-​directed single quantum dot-​based biosensor for sensitive detection of METTL3/​14 complex activity in breast cancer tissues.​ Analytica Chimica Acta, 1279, 341796.​ https:​/​/​doi.​org/​10.​1016/​j.​aca.​2023.​341796

[17]. Zhang, Q.​, Li, J.​, Li, Y.​, Tan, G.​, Sun, M.​, Shan, Y.​, Zhang, Y.​, Wang, X.​, Song, K.​, Shi, R.​, Huang, L.​, Liu, F.​, Yi, Y.​, &​ Wu, X.​ (2022).​ SARS-​CoV-​2 detection using quantum dot fluorescence immunochromatography combined with isothermal amplification and CRISPR/​Cas13a.​ Biosensors and Bioelectronics, 202, 113978.​ https:​/​/​doi.​org/​10.​1016/​j.​bios.​2022.​113978

[18]. Wu, P.​, Zhang, L.​, Zhang, G.​, Cheng, L.​, Zhang, F.​, Li, Y.​, Lei, Y.​, Qi, H.​, Zhang, C.​, &​ Gao, Q.​ (2024).​ Highly Sensitive Electrochemiluminescence Biosensing Method for SARS-​CoV-​2 N Protein Incorporating the Micelle Probes of Quantum Dots and Dibenzoyl Peroxide Using the Screen-​Printed Carbon Electrode Modified with a Carboxyl-​Functionalized Graphene.​ Analytical Chemistry, 96(43), 17345–17352.​ https:​/​/​doi.​org/​10.​1021/​acs.​analchem.​4c04024

[19]. Mohd Bakhori, N.​, Yusof, N.​ A.​, Abdullah, J.​, Wasoh, H.​, Ab Rahman, S.​ K.​, &​ Abd Rahman, S.​ F.​ (2019).​ Surface Enhanced CdSe/​ZnS QD/​SiNP Electrochemical Immunosensor for the Detection of Mycobacterium Tuberculosis by Combination of CFP10-​ESAT6 for Better Diagnostic Specificity.​ Materials, 13(1), 149.​ https:​/​/​doi.​org/​10.​3390/​ma13010149

[20]. Ding, S.​, Hu, H.​, Yue, X.​, Feng, K.​, Gao, X.​, Dong, Q.​, Yang, M.​, Tamer, U.​, Huang, G.​, &​ Zhang, J.​ (2022).​ A fluorescent biosensor based on quantum dot–labeled streptavidin and poly-​l-​lysine for the rapid detection of Salmonella in milk.​ Journal of Dairy Science, 105(4), 2895–2907.​ https:​/​/​doi.​org/​10.​3168/​jds.​2021-​21229

[21]. Giroux, M.​ S.​, Zahra, Z.​, Salawu, O.​ A.​, Burgess, R.​ M.​, Ho, K.​ T.​, &​ Adeleye, A.​ S.​ (2022).​ Assessing the environmental effects related to quantum dot structure, function, synthesis and exposure.​ Environmental Science:​ Nano, 9(3), 867–910.​ https:​/​/​doi.​org/​10.​1039/​D1EN00712B

[22]. Li, X.​, Chen, C.​ C.​, Wu, L.​, Zhou, J.​, Huang, Y.​, &​ Zhu, X.​ (2024).​ Neglected negative effect of carbon quantum dots (CQDs) entering the ocean on marine organisms living in different water layers.​ Marine Pollution Bulletin, 199, 115921.​ https:​/​/​doi.​org/​10.​1016/​j.​marpolbul.​2023.​115921

[23]. European Commission.​ (2024, March 23).​ Commission Delegated Directive (EU) of 13.​3.​2024 amending Directive 2011/​65/​EU of the European Parliament and of the Council as regards an exemption for cadmium in downshifting quantum dots directly deposited LED semiconductor chips.​ https:​/​/​ec.​europa.​eu/​info/​law/​better-​regulation/​have-​your-​say/​initiatives/​13468-​Hazardous-​substances-​in-​electrical-​and-​electronic-​equipment-​exemption-​for-​cadmium-​in-​quantum-​dots-​for-​LED-​applications_​en

[24]. Saadh, M.​ J.​, Al-​dolaimy, F.​, Alamir, H.​ T.​ A.​, Kadhim, O.​, Al-​Abdeen, S.​ H.​ Z.​, Sattar, R.​, Jabbar, A.​ M.​, Kadhem Abid, M.​, Jetti, R.​, Alawadi, A.​, &​ Alsalamy, A.​ (2024).​ Emerging pathways in environmentally friendly synthesis of carbon-​based quantum dots for exploring antibacterial resistance.​ Inorganic Chemistry Communications, 161, 112012.​ https:​/​/​doi.​org/​10.​1016/​j.​inoche.​2023.​112012

[25]. Feng, S.​, &​ Guanghua, L.​ (2011).​ Hydrothermal and Solvothermal Syntheses.​ In Modern Inorganic Synthetic Chemistry (pp.​ 63–95).​ Elsevier.​ https:​/​/​doi.​org/​10.​1016/​B978-​0-​444-​53599-​3.​10004-​6

[26]. Zhao, Q.​, Mao, H.​-​H.​, Xue, M.​, Feng, X.​-​Z.​, Han, G.​-​C.​, Chen, Z.​, &​ Kraatz, H.​-​B.​ (2023).​ One-​pot synthesis of environmentally-​friendly carbon quantum dots for “on-​off” rapid fluorescent sensing of folic acid, Fe3+​, and Ca2+​.​ Journal of Luminescence, 263, 120091.​ https:​/​/​doi.​org/​10.​1016/​j.​jlumin.​2023.​120091.​

[27]. Yalshetti, S.​, Thokchom, B.​, Bhavi, S.​ M.​, Singh, S.​ R.​, Patil, S.​ R.​, Harini, B.​ P.​, Sillanpää, M.​, Manjunatha, J.​ G.​, Srinath, B.​ S.​, &​ Yarajarla, R.​ B.​ (2024).​ Microwave-​assisted synthesis, characterization and in vitro biomedical applications of Hibiscus rosa-​sinensis Linn.​-​mediated carbon quantum dots.​ Scientific Reports, 14(1), 9915.​ https:​/​/​doi.​org/​10.​1038/​s41598-​024-​60726-​y

Cite this article

Zhao,A. (2025). Review of Quantum Dots-Based Biosensor Systems: Construction and Applications. Theoretical and Natural Science,98,16-23.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Modern Medicine and Global Health

Conference website: https://www.icmmgh.org/
ISBN:978-1-80590-003-0(Print) / 978-1-80590-004-7(Online)
Conference date: 10 January 2025
Editor:Sheiladevi Sukumaran
Series: Theoretical and Natural Science
Volume number: Vol.98
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).