
Novel Vaccine Design Strategies Against SARS-CoV-2 Variants: From Conserved Region Targeting to Multiepitope Approaches
- 1 Agricultural University of Hebei Baoding City, Hebei Province, China
* Author to whom correspondence should be addressed.
Abstract
SARS-CoV-2, the causative agent of COVID-19, represents a significant global health challenge. The continuous emergence of variants with immune-evasion capabilities, particularly Delta, Beta, and Omicron, has raised concerns about the long-term efficacy of current vaccines. These variants harbor mutations in the spike protein that alter viral binding affinity and enable escape from vaccine-induced neutralizing antibodies. This research examines vaccine design strategies targeting breakthrough variants, with particular focus on antibody-tolerant functions and mutational adaptability characteristics. We analyze modifications in spike protein configuration and function, especially within the receptor-binding domain (RBD), which primarily contributes to immune escape. Additionally, we evaluate how these mutations impact vaccine development and propose broad-spectrum protection strategies. By integrating insights from molecular evolution, structural biology, and immunology, this study provides a comprehensive framework for understanding SARS-CoV-2 and offers novel perspectives on future vaccine design. Our findings underscore the importance of developing mutation-responsive vaccines and therapeutic approaches to address continuously evolving viral threats.
Keywords
SARS-CoV-2 variants, Vaccine design, Immune escape, Conserved region vaccines, Multiepitope vaccines
[1]. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270–273. doi: 10.1038/s41586-020-2012-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
[2]. Sharma A, Ahmad Farouk I, Lal SK. COVID-19: A Review on the Novel Coronavirus Disease Evolution, Transmission, Detection, Control and Prevention. Viruses. 2021 Jan 29;13(2):202. doi: 10.3390/v13020202. PMID: 33572857; PMCID: PMC7911532.
[3]. WHO WHO Coronavirus (COVID-19) Dashboard. [(accessed on 12 March 2024)]. Available online: https://data.who.int/dashboards/covid19/
[4]. Sun Y, Huang W, Xiang H, Nie J. SARS-CoV-2 Neutralization Assays Used in Clinical Trials: A Narrative Review. Vaccines (Basel). 2024 May 18;12(5):554. doi: 10.3390/vaccines12050554. PMID: 38793805; PMCID: PMC11125816.
[5]. Chang J. Adenovirus Vectors: Excellent Tools for Vaccine Development. Immune Netw. 2021 Feb 15;21(1):e6. doi: 10.4110/in.2021.21.e6. PMID: 33728099; PMCID: PMC7937504.
[6]. Flores-Alanis A, Delgado G, Espinosa-Camacho LF, Rodríguez-Gómez F, Cruz-Rangel A, Sandner-Miranda L, Cravioto A, Morales-Espinosa R. Two Years of Evolutionary Dynamics of SARS-CoV-2 in Mexico, With Emphasis on the Variants of Concern. Front Microbiol. 2022 Jul 5;13:886585. doi: 10.3389/fmicb.2022.886585. PMID: 35865920; PMCID: PMC9294468.
[7]. Bettini E, Locci M. SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines (Basel). 2021 Feb 12;9(2):147. doi: 10.3390/vaccines9020147. PMID: 33673048; PMCID: PMC7918810.
[8]. Understanding mRNA COVID-19 vaccines. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines/mrna.html. Accessed Jan. 6, 2021.
[9]. The different types of COVID-19 vaccines. World Health Organization. https://www.who.int/news-room/feature-stories/detail/the-race-for-a-covid-19-vaccine-explained. Accessed Feb. 3, 2021.
[10]. Delacher, M., Simon, M., Sanderink, L., Hotz-Wagenblatt, A., Wuttke, M., Schambeck, K., Schmidleithner, L., Bittner, S., Pant, A., Ritter, U., et al. (2021). Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells.Immunity54, 702–720.e17. https://doi.org/10.1016/j.immuni.2021.03.007
[11]. Yang J, et al. A vaccine targeting the RBD of the S protein of SARS - CoV - 2 induces protective immunity[J].
[12]. M. Bergwerk, T. Gonen, Y. Lustig, S. Amit, M. Lipsitch, C. Cohen, M. Mandelboim, E. Gal Levin, C. Rubin, V. Indenbaum, I. Tal, M. Zavitan, N. Zuckerman, A. Bar-Chaim, Y. Kreiss, G. Regev-Yochay, Covid-19 breakthrough infections in vaccinated health care workers. N. Engl. J. Med. 385, 1474–1484 (2021).
[13]. Y. Araf, F. Akter, Y.-D. Tang, R. Fatemi, M. S. A. Parvez, C. Zheng, M. G. Hossain, Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines. J. Med. Virol. 94, 1825–1832 (2022).
[14]. E. G. Levin, Y. Lustig, C. Cohen, R. Fluss, V. Indenbaum, S. Amit, R. Doolman, K. Asraf, E. Mendelson, A. Ziv, C. Rubin, L. Freedman, Y. Kreiss, G. Regev-Yochay, Waning immune humoral response to BNT162b2 covid-19 vaccine over 6 months. N. Engl. J. Med. 385, e84 (2021).
[15]. S. Feng, D. J. Phillips, T. White, H. Sayal, P. K. Aley, S. Bibi, C. Dold, M. Fuskova, S. C. Gilbert, I. Hirsch, H. E. Humphries, B. Jepson, E. J. Kelly, E. Plested, K. Shoemaker, K. M. Thomas, J. Vekemans, T. L. Villafana, T. Lambe, A. J. Pollard, M. Voysey; Oxford COVID Vaccine Trial Group, Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection. Nat. Med. 27, 2032–2040 (2021).
[16]. P. B. Gilbert, D. C. Montefiori, A. B. McDermott, Y. Fong, D. Benkeser, W. Deng, H. Zhou, C. R. Houchens, K. Martins, L. Jayashankar, F. Castellino, B. Flach, B. C. Lin, S. O’Connell, C. McDanal, A. Eaton, M. Sarzotti-Kelsoe, Y. Lu, C. Yu, B. Borate, L. W. P. van der Laan, N. S. Hejazi, C. Huynh, J. Miller, H. M. El Sahly, L. R. Baden, M. Baron, L. De La Cruz, C. Gay, S. Kalams, C. F. Kelley, M. P. Andrasik, J. G. Kublin, L. Corey, K. M. Neuzil, L. N. Carpp, R. Pajon, D. Follmann, R. O. Donis, R. A. Koup; Immune Assays Team§; Moderna, Inc. Team§; Coronavirus Vaccine Prevention Network (CoVPN)/Coronavirus Efficacy (COVE) Team§; United States Government (USG)/CoVPN Biostatistics Team§, Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science 375, 43–50 (2021).
[17]. Cao, Y., Wang, J., Jian, F. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature 602, 657–663 (2022). https://doi.org/10.1038/s41586-021-04385-3
[18]. L. Subissi, C.C. Posthuma, A. Collet, et al. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities Proc. Natl. Acad. Sci. USA, 111 (37) (2014), pp. E3900 E3909, 10.1073/pnas.1323705111
[19]. Md. Aminul Islam, A review of SARS-CoV-2 variants and vaccines: Viral properties, mutations, vaccine efficacy, and safety, Infectious Medicine, Volume 2, Issue 4, 2023, Pages 247-261, ISSN 2772-431X, https://doi.org/10.1016/j.imj.2023.08.005.
[20]. L. Subissi, C.C. Posthuma, A. Collet, et al.One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities Proc. Natl. Acad. Sci. USA, 111 (37) (2014), pp. E3900-E3909, 10.1073/pnas.1323705111
[21]. Olukitibi, T.A.; Ao, Z.; Warner, B.; Unat, R.; Kobasa, D.; Yao, X. Significance of Conserved Regions in Coronavirus Spike Protein for Developing a Novel Vaccine against SARS-CoV-2 Infection. Vaccines 2023, 11, 545. https://doi.org/10.3390/vaccines11030545
[22]. Erbelding, E.J.; Post, D.J.; Stemmy, E.J.; Roberts, P.C.; Augustine, A.D.; Ferguson, S.; Paules, C.I.; Graham, B.S.; Fauci, A.S. A universal influenza vaccine: The strategic plan for the National Institute of Allergy and Infectious Diseases. J. Infect. Dis. 2018, 218, 347–354. [Google Scholar] [CrossRef]
[23]. Nachbagauer, R.; Krammer, F. Universal influenza virus vaccines and therapeutic antibodies. Clin. Microbiol. Infect. 2017, 23, 222–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
[24]. Neirynck, S.; Deroo, T.; Saelens, X.; Vanlandschoot, P.; Jou, W.M.; Fiers, W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 1999, 5, 1157–1163. [Google Scholar] [CrossRef]
[25]. Saelens, X. The role of matrix protein 2 ectodomain in the development of universal influenza vaccines. J. Infect. Dis. 2019, 219, S68–S74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
[26]. Uranowska, K.; Tyborowska, J.; Jurek, A.; Szewczyk, B.a.; Gromadzka, B. Hemagglutinin stalk domain from H5N1 strain as a potentially universal antigen. Acta Biochim. Pol. 2014, 61, 541–550. [Google Scholar] [CrossRef] [Green Version]
[27]. Turley, C.B.; Rupp, R.E.; Johnson, C.; Taylor, D.N.; Wolfson, J.; Tussey, L.; Kavita, U.; Stanberry, L.; Shaw, A. Safety and immunogenicity of a recombinant M2e–flagellin influenza vaccine (STF2. 4xM2e) in healthy adults. Vaccine 2011, 29, 5145–5152. [Google Scholar] [CrossRef]
[28]. Olukitibi, T.; Ao, Z.; Azizi, H.; Mahmoudi, M.; Coombs, K.; Kobasa, D.; Kobinger, G.; Yao, X. Development and characterization of influenza M2 ectodomain and/or hemagglutinin stalk-based dendritic cell-targeting vaccines. Front. Microbiol. 2022, 13, 937192–937206. [Google Scholar] [CrossRef]
[29]. Kar, T., Narsaria, U., Basak, S. et al. A candidate multi-epitope vaccine against SARS-CoV-2. Sci Rep 10, 10895 (2020). https://doi.org/10.1038/s41598-020-67749-1
[30]. Thadani, N.N., Gurev, S., Notin, P. et al. Learning from prepandemic data to forecast viral escape. Nature 622, 818–825 (2023). https://doi.org/10.1038/s41586-023-06617-0
[31]. Xinyu Zhou, Kevin Hu, Minmin Pan, Yajie Li, Chi Zhang, Sha Cao bioRxiv 2023.12.19.572480; doi: https://doi.org/10.1101/2023.12.19.572480
Cite this article
Zhang,Y. (2025). Novel Vaccine Design Strategies Against SARS-CoV-2 Variants: From Conserved Region Targeting to Multiepitope Approaches. Theoretical and Natural Science,99,36-42.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 5th International Conference on Biological Engineering and Medical Science
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).