
Decoding Septic Shock Genetics: Immune Pathway Disruption and Target Discovery
- 1 Southeast University, No. 2, Southeast University Road, Jiangning District, Nanjing, Jiangsu Province, China
* Author to whom correspondence should be addressed.
Abstract
Recent advancements in understanding the pathogenesis and therapeutic approaches for septic shock have been made; however, research elucidating genetic-level mechanisms remains limited. This study aims to explore genetic contributors to septic shock pathogenesis and evaluate differentially expressed genes as potential diagnostic targets. Utilizing the GSE95233 dataset from the GEO database, we compared blood samples from 51 septic shock patients and 22 healthy controls via R language and GEO2R tools. We identified 38 differentially expressed genes (21 upregulated, 17 downregulated). GO functional enrichment analysis of differential genes was carried out using the Cluster Profiler package in R language, and the results showed that most of the differential genes were distributed in T cells, which were related to the development, differentiation, recognition, and clearance of T cells, and the regulation of inflammatory cytokines, which directly affected immune signaling and immune killing pathways. We also analyzed the interaction network between differentially expressed proteins with the help of string online website and MCODE plug-in in Cytoscape 3.8.2, and identified 9 core genes, including BCL11B and TBX21 genes related to immune cell development and differentiation, CD247, CD3G, CD8A and S1PR5 genes related to T cell signaling, PRF1 and GNLY genes related to immune cell killing activity. Through the evaluation of gene function and the prediction of the mechanism of action, we determined that BCL11B, TBX21, S1PR5, CD247, PRF1 and other differential genes can be used as new targets for research to prevent the exacerbation of sepsis and treat septic shock.
Keywords
Sepsis shock, R language, GEO database, Differential genes, Bioinformatics
[1]. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent JL, Angus DC. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23;315(8):801-10.
[2]. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study Rudd, Kristina E et al. The Lancet, Volume 395, Issue 10219, 200 – 211.
[3]. Liu YC, Yao Y, Yu MM, Gao YL, Qi AL, Jiang TY, Chen ZS, Shou ST, Chai YF. Frequency and mortality of sepsis and septic shock in China: a systematic review and meta-analysis. BMC Infect Dis. 2022 Jun 21;22(1):564.
[4]. van der Poll T,Shankar-Hari M,Wiersinga WJ.The immunology of sepsis[J]. Immunity, 2021,54(11):2450-2464.
[5]. Hotchkiss RS,Monneret G,Payen D.Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy[J]. Nat Rev Immunol, 2013,13(12):862-874.
[6]. Shang Q, Yu X, Sun Q, Li H, Sun C, Liu L. Polysaccharides regulate Th1/Th2 balance: A new strategy for tumor immunotherapy. Biomed Pharmacother. 2024 Jan;170:115976.
[7]. Wang J, Wu Y, Chen J, Zhang Q, Liu Y, Long H, Yu J, Wu Q, Feng L. Th1/Th2 Imbalance in Peripheral Blood Echoes Microglia State Dynamics in CNS During TLE Progression. Adv Sci (Weinh). 2024 Oct;11(39):e2405346.
[8]. Xue M, Xie J, Liu L, Huang Y, Guo F, Xu J, Yang Y, Qiu H. Early and dynamic alterations of Th2/Th1 in previously immunocompetent patients with community-acquired severe sepsis: a prospective observational study. J Transl Med. 2019 Feb 27;17(1):57.
[9]. Martin MD, Badovinac VP, Griffith TS. CD4 T Cell Responses and the Sepsis-Induced Immunoparalysis State. Front Immunol. 2020 Jul 7;11:1364.
[10]. Qiu Y,Tu GW,Ju MJ,et al.The immune system regulation in sepsis:from innate to adaptive[J]. Curr Protein Pept Sci, 2019,20(8):799-816.
[11]. Chen X, Liu Y, Gao Y, Shou S, Chai Y. The roles of macrophage polarization in the host immune response to sepsis.Int Immunopharmacol. 2021 Jul;96:107791.
[12]. H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.
[13]. G Yu. Thirteen years of clusterProfiler. The Innovation. 2024, 5(6):100722
[14]. S Xu, E Hu, Y Cai, Z Xie, X Luo, L Zhan, W Tang, Q Wang, B Liu, R Wang, W Xie, T Wu, L Xie, G Yu. Using clusterProfiler to characterize multiomics data. Nature Protocols. 2024, 19(11):3292-3320
[15]. T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation. 2021, 2(3):100141
[16]. Guangchuang Yu, Li-Gen Wang, Yanyan Han and Qing-Yu He. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS: A Journal of Integrative Biology 2012, 16(5):284-287
[17]. Qiu P, Liu Y, Zhang J. Review: the Role and Mechanisms of Macrophage Autophagy in Sepsis. Inflammation. 2019 Feb;42(1):6-19.
[18]. Ehrlich LA, Yang-Iott K, Bassing CH. Tcrδ translocations that delete the Bcl11b haploinsufficient tumor suppressor gene promote atm-deficient T cell acute lymphoblastic leukemia. Cell Cycle. 2014;13:3076–82.
[19]. ]V. Le Douce, T. Cherrier, R. Riclet, O. Rohr, C. Schwartz. CTIP2, a multifunctional protein: cellular physiopathology and therapeutic implications. M S-Med Sci, 30 (2014), pp. 797-802
[20]. Huang, L., Qiao, L., Zhu, H. et al. Genomics of neonatal sepsis: has-miR-150 targeting BCL11B functions in disease progression. Ital J Pediatr 44, 145 (2018).
[21]. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH. A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell. 2000 Mar 17;100(6):655-69.
[22]. Hertweck A, Evans CM, Eskandarpour M, Lau JC, Oleinika K, Jackson I, Kelly A, Ambrose J, Adamson P, Cousins DJ, Lavender P, Calder VL, Lord GM, Jenner RG. T-bet Activates Th1 Genes through Mediator and the Super Elongation Complex. Cell Rep. 2016 Jun 21;15(12):2756-70.
[23]. Bartsch, P., Kilian, C., Hellmig, M., Paust, H., Borchers, A., Sivayoganathan, A., . . . Th17 cell plasticity towards a T-bet-dependent Th1 phenotype is required for bacterial control in staphylococcus aureus infection. PLoS Pathogens, 18(4). https://orcid.org/0000-0003-2739-5578, C. F. K. (2022).
[24]. Yang R, Mele F, Worley L, Langlais D, Rosain J, Benhsaien I, Elarabi H, Croft CA, Doisne JM, Zhang P, Weisshaar M, Jarrossay D, Latorre D, Shen Y, Han J, Ogishi M, Gruber C, Markle J, Al Ali F, Rahman M, Khan T, Seeleuthner Y, Kerner G, Husquin LT, Maclsaac JL, Jeljeli M, Errami A, Ailal F, Kobor MS, Oleaga-Quintas C, Roynard M, Bourgey M, El Baghdadi J, Boisson-Dupuis S, Puel A, Batteux F, Rozenberg F, Marr N, Pan-Hammarström Q, Bogunovic D, Quintana-Murci L, Carroll T, Ma CS, Abel L, Bousfiha A, Di Santo JP, Glimcher LH, Gros P, Tangye SG, Sallusto F, Bustamante J, Casanova JL. Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria. Cell. 2020 Dec 23;183(7):1826-1847.e31.
[25]. Raquel Almansa, María Heredia-Rodríguez, Esther Gomez-Sanchez, David Andaluz-Ojeda, Verónica Iglesias, Lucia Rico, Alicia Ortega, Estefanía Gomez-Pesquera, Pilar Liu, Marta Aragón, Jose Maria Eiros, Maria Ángeles Jiménez-Sousa, Salvador Resino, Ignacio Gómez-Herreras, Jesús F. Bermejo-Martín, Eduardo Tamayo. Transcriptomic correlates of organ failure extent in sepsis, Journal of Infection, Volume 70, Issue 5, 2015, Pages 445-456, ISSN 0163-4453.
[26]. Yang R, Mele F, Worley L, Langlais D, Rosain J, Benhsaien I, Elarabi H, Croft CA, Doisne JM, Zhang P, Weisshaar M, Jarrossay D, Latorre D, Shen Y, Han J, Ogishi M, Gruber C, Markle J, Al Ali F, Rahman M, Khan T, Seeleuthner Y, Kerner G, Husquin LT, Maclsaac JL, Jeljeli M, Errami A, Ailal F, Kobor MS, Oleaga-Quintas C, Roynard M, Bourgey M, El Baghdadi J, Boisson-Dupuis S, Puel A, Batteux F, Rozenberg F, Marr N, Pan-Hammarström Q, Bogunovic D, Quintana-Murci L, Carroll T, Ma CS, Abel L, Bousfiha A, Di Santo JP, Glimcher LH, Gros P, Tangye SG, Sallusto F, Bustamante J, Casanova JL. Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria. Cell. 2020 Dec 23;183(7):1826-1847.e31.
[27]. Evrard M, Wynne-Jones E, Peng C, Kato Y, Christo SN, Fonseca R, Park SL, Burn TN, Osman M, Devi S, Chun J, Mueller SN, Kannourakis G, Berzins SP, Pellicci DG, Heath WR, Jameson SC, Mackay LK. Sphingosine 1-phosphate receptor 5 (S1PR5) regulates the peripheral retention of tissue-resident lymphocytes. J Exp Med. 2022 Jan 3;219(1):e20210116.
[28]. Barnawi J, Tran H, Jersmann H, et al. Potential link between the sphingosine-1-phosphate (S1P) system and defective alveolar macrophage phagocytic function in chronic obstructive pulmonary disease (COPD). PloS One . 2015;10(10): e0122771.
[29]. Tian, Y. , Wang, L. , Chen, W. , Zhong, W. & Hu, Y. (2023). Screening of Potential Core Genes in the Peripheral Blood of Adult Patients with Sepsis Based on immunoregulation and Signal Transduction Functions. Shock, 59 (5), 708-715.
[30]. Barber EK, Dasgupta JD, Schlossman SF, Trevillyan JM, Rudd CE. The CD4 and CD8 antigens are coupled to a protein-tyrosine kinase (p56lck) that phosphorylates the CD3 complex. Proc Natl Acad Sci U S A. 1989 May;86(9):3277-81.
[31]. Osman N, Ley SC, Crumpton MJ. Evidence for an association between the T cell receptor/CD3 antigen complex and the CD5 antigen in human T lymphocytes. Eur J Immunol. 1992 Nov;22(11):2995-3000.
[32]. Burgess KE, Yamamoto M, Prasad KV, Rudd CE. CD5 acts as a tyrosine kinase substrate within a receptor complex comprising T-cell receptor zeta chain/CD3 and protein-tyrosine kinases p56lck and p59fyn. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9311-5.
[33]. Iwashima M, Irving BA, van Oers NS, Chan AC, Weiss A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science. 1994 Feb 25;263(5150):1136-9.
[34]. Gorman C. L., Russell A. I., Zhang Z., Cunninghame Graham D., Cope A. P., and Vyse T. J., Polymorphisms in the CD3Z gene influence TCRζ expression in systemic lupus erythematosus patients and healthy controls, The Journal of Immunology. (2008) 180, no. 2, 1060–1070.
[35]. Takeuchi T. and Suzuki K., CD247 variants and single-nucleotide polymorphisms observed in systemic lupus erythematosus patients, Rheumatology. (2013) 52, no. 9, 1551–1555.
[36]. Zhou S., Lu H., and Xiong M., Identifying immune cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by bioinformatics analysis, Frontiers in Immunology. (2021) 12, 726747.
[37]. Radstake T. R., Gorlova O., Rueda B., Martin J. E., Alizadeh B. Z., Palomino-Morales R., Coenen M. J., Vonk M. C., Voskuyl A. E., Schuerwegh A. J., Broen J. C, van Riel P. L., van 't Slot R., Italiaander A., Ophoff R. A., Riemekasten G., Hunzelmann N., Simeon C. P., Ortego-Centeno N., González-Gay M. A., González-Escribano M. F., Airo P., van Laar J., Herrick A., Worthington J., Hesselstrand R., Smith V., de Keyser F., Houssiau F., Chee M. M., Madhok R., Shiels P., Westhovens R., Kreuter A., Kiener H., de Baere E., Witte T., Padykov L., Klareskog L., Beretta L., Scorza R., Lie B. A., Hoffmann-Vold A. M., Carreira P., Varga J., Hinchcliff M., Gregersen P. K., Lee A. T., Ying J., Han Y., Weng S. F., Amos C. I., Wigley F. M., Hummers L., Nelson J. L., Agarwal S. K., Assassi S., Gourh P., Tan F. K., Koeleman B. P., Arnett F. C., Martin J., and Mayes M. D., Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus, Nature Genetics. (2010) 42, no. 5, 426–429.
[38]. Dietrich J, Hou X, Wegener AM, Geisler C. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor. EMBO J. 1994 May 1;13(9):2156-66.
[39]. Snow PM, Terhorst C. The T8 antigen is a multimeric complex of two distinct subunits on human thymocytes but consists of homomultimeric forms on peripheral blood T lymphocytes. J Biol Chem. 1983 Dec 10;258(23):14675-81.
[40]. Zeng X., Feng J., Yang Y., Zhao R., Yu Q., Qin H., Wei L., Ji P., Li H., Wu Z., and Zhang J., Screening of key genes of sepsis and septic shock using bioinformatics analysis, Journal of Inflammation Research. (2021) 14, 829–841.
[41]. Jiang Y., Miao Q., Hu L., Zhou T., Hu Y., and Tian Y., FYN and CD247: key genes for septic shock based on bioinformatics and meta-analysis, Combinatorial Chemistry & High Throughput Screening. (2021) 24, 1–9.
[42]. Ermis E, Celik SK, Solak N, Genc GC, Dursun A. The role of GNLY gene polymorphisms in psoriasis pathogenesis. An Bras Dermatol. 2019;94(2):198–203.
[43]. Khalid HN, Elghobashy YAE, Elsayed AN. GNLY gene polymorphism: A potential role in understanding psoriasis pathogenesis. J Cosmet Dermatol. 2022;21(10):4805–9.
[44]. Lettau M, Dietz M, Dohmen K, Leippe M, Kabelitz D, Janssen O. Granulysin species segregate to different lysosome-related effector vesicles (LREV) and get mobilized by either classical or non-classical degranulation. Mol Immunol. 2019;107:44–53.
[45]. Praper T, Sonnen A, Viero G, Kladnik A, Froelich CJ, Anderluh G, Dalla Serra M, Gilbert RJ. Human perforin employs different avenues to damage membranes. J Biol Chem. 2011 Jan 28;286(4):2946-55.
[46]. Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D'Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC. The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature. 2010 Nov 18;468(7322):447-51.
[47]. Stewart SE, Kondos SC, Matthews AY, D'Angelo ME, Dunstone MA, Whisstock JC, Trapani JA, Bird PI. The perforin pore facilitates the delivery of cationic cargos. J Biol Chem. 2014 Mar 28;289(13):9172-81.
[48]. Vergelli M, Hemmer B, Muraro PA, Tranquill L, Biddison WE, Sarin A, McFarland HF, Martin R. Human autoreactive CD4+ T cell clones use perforin- or Fas/Fas ligand-mediated pathways for target cell lysis. J Immunol. 1997 Mar 15;158(6):2756-61.
[49]. Ando K, Hiroishi K, Kaneko T, Moriyama T, Muto Y, Kayagaki N, Yagita H, Okumura K, Imawari M. Perforin, Fas/Fas ligand, and TNF-alpha pathways as specific and bystander killing mechanisms of hepatitis C virus-specific human CTL. J Immunol. 1997 Jun 1;158(11):5283-91.
[50]. Zhu GH, Zhang LP, Li ZG, Wei A, Yang Y, Tian Y, Ma HH, Wang D, Zhao XX, Zhao YZ, et al. Associations between PRF1 Ala91Val polymorphism and risk of hemophagocytic lymphohistiocytosis: a meta-analysis based on 1366 subjects. World J Pediatr. 2020;16(6):598–606.
[51]. Kadi Ozan, Z. , Erduran, E. , Ceylaner, S. , Aslan, Y. , Bahadir, A. , Reis, G. & Mutlu, M. (2024). Familial Hemophagocytic Lymphohistiocytosis Screening in Neonatal Sepsis. Journal of Pediatric Hematology/Oncology, 46 (6), e393-e401.
Cite this article
Qiu,Y. (2025). Decoding Septic Shock Genetics: Immune Pathway Disruption and Target Discovery. Theoretical and Natural Science,94,75-85.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 3rd International Conference on Environmental Geoscience and Earth Ecology
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).