
The Molecular Mechanism of Hydrogen Sulfide Regulation on Nasopharyngeal Carcinoma Cell Growth
- 1 Beijing University of Chemical Technology, Nanjian Street, Beijing, China
* Author to whom correspondence should be addressed.
Abstract
Hydrogen sulfide (H₂S), as a critical gasotransmitter, plays a dual role in regulating tumor growth depending on its concentration and tumor type. In nasopharyngeal carcinoma (NPC), systematic reviews have demonstrated the involvement of H₂S in multiple cellular processes, including cell proliferation, apoptosis, and metastasis. This study systematically explores the molecular mechanisms of H₂S in NPC, focusing on its role in modulating signaling pathways, for example, PI3K/AKT, Wnt/β-catenin, and ROS-mediated pathways. The findings indicate that H₂S exerts its effects by regulating the expression of oncogenes and tumor suppressor genes, altering the tumor microenvironment, and influencing mitochondrial function. These insights provide a foundation for novel therapeutic strategies targeting H₂S metabolism in NPC.
Keywords
hydrogen sulfide, nasopharyngeal carcinoma, molecular mechanism, signal transduction, therapeutic target
[1]. W. Gao, Y.F. Liu, Y.X. Zhang, Y. Wang, Y.Q. Jin, H. Yuan, X.Y. Liang, X.Y. Ji, Q.Y. Jiang, D.D. Wu, The potential role of hydrogen sulfide in cancer cell apoptosis, Cell Death Discovery, 10 (2024).
[2]. N. Shibuya, S. Koike, M. Tanaka, M. Ishigami-Yuasa, Y. Kimura, Y. Ogasawara, K. Fukui, N. Nagahara, H. Kimura, A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells, Nitric Oxide-Biology and Chemistry, 39 (2014) S26-S26.
[3]. L.R. Ke, H.F. Zhou, C. Wang, G. Xiong, Y.Q. Xiang, Y.H. Ling, A. Khabir, G.S. Tsao, Y.X. Zeng, M.S. Zeng, P. Busson, E. Kieff, X. Guo, B. Zhao, Nasopharyngeal carcinoma super-enhancer-driven ETV6 correlates with prognosis, Proceedings of the National Academy of Sciences of the United States of America, 114 (2017) 9683-9688.
[4]. Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer, The New England journal of medicine, 378 (2018) 973.
[5]. M. Fu, W.H. Zhang, L.Y. Wu, G.D. Yang, H.Z. Li, R. Wang, Hydrogen sulfide (H<sub>2</sub>S) metabolism in mitochondria and its regulatory role in energy production, Proceedings of the National Academy of Sciences of the United States of America, 109 (2012) 2943-2948.
[6]. R.L. Yang, C.Y. Qu, Y. Zhou, J.E. Konkel, S.H. Shi, Y. Liu, C.D. Chen, S.Y. Liu, D.W. Liu, Y.B. Chen, E. Zandi, W.J. Chen, Y.H. Zhou, S.T. Shi, Hydrogen Sulfide Promotes Tet1-and Tet2-Mediated <i>Foxp3</i> Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis, Immunity, 43 (2015) 251-263.
[7]. Q.Q. Zhang, Y.R. Gao, Y.X. Zhang, M.R. Jing, D. Wang, Y.Z. Wang, S. Khattak, H.W. Qi, C.B. Cai, J. Zhang, E.E. Ngowi, N.H. Khan, T. Li, A.L. Ji, Q.Y. Jiang, X.Y. Ji, Y.Z. Li, D.D. Wu, Cystathionine γ-lyase mediates cell proliferation, migration, and invasion of nasopharyngeal carcinoma, Oncogene, 41 (2022) 5238-5252.
[8]. N. Qipshidze, N. Metreveli, P.K. Mishra, D. Lominadze, S.C. Tyagi, Hydrogen Sulfide Mitigates Cardiac Remodeling During Myocardial Infarction via Improvement of Angiogenesis, International Journal of Biological Sciences, 8 (2012) 430-441.
[9]. Y.H. Wang, J.T. Huang, W.L. Chen, R.H. Wang, M.C. Kao, Y.R. Pan, S.H. Chan, K.W. Tsai, H.J. Kung, K.T. Lin, L.H. Wang, Dysregulation of cystathionine γ-lyase promotes prostate cancer progression and metastasis, Embo Reports, 20 (2019).
[10]. C.H. Zhang, Z.L. Jiang, Y. Meng, W.Y. Yang, X.Y. Zhang, Y.X. Zhang, S. Khattak, X.Y. Ji, D.D. Wu, Hydrogen sulfide and its donors: Novel antitumor and antimetastatic agents for liver cancer, Cellular Signalling, 106 (2023).
[11]. D.Y. Wang, J. Zhang, H.X. Li, Y.X. Zhang, M.R. Jing, C.B. Cai, D. Wang, H.W. Qi, Y.Z. Wang, H.J. Chen, T. Li, Y.K. Zhai, X.Y. Ji, D.D. Wu, Inhibition of endogenous hydrogen sulfide production suppresses the growth of nasopharyngeal carcinoma cells, Molecular Carcinogenesis, 62 (2023) 652-664.
[12]. E. Hadler-Olsen, J.O. Winberg, L. Uhlin-Hansen, Matrix metalloproteinases in cancer: their value as diagnostic and prognostic markers and therapeutic targets, Tumor Biology, 34 (2013) 2041-2051.
[13]. D. Yang, T.Q. Li, Y.L. Li, S.N. Zhang, W.R. Li, H. Liang, Z.K. Xing, L.S. Du, J.C. He, C.X. Kuang, Q. Yang, H<sub>2</sub>S suppresses indoleamine 2, 3-dioxygenase 1 and exhibits immunotherapeutic efficacy in murine hepatocellular carcinoma, Journal of Experimental & Clinical Cancer Research, 38 (2019).
[14]. A.K. Mustafa, M.M. Gadalla, N. Sen, S. Kim, W.T. Mu, S.K. Gazi, R.K. Barrow, G.D. Yang, R. Wang, S.H. Snyder, H<sub>2</sub>S Signals Through Protein S-Sulfhydration, Science Signaling, 2 (2009).
[15]. K. Mortezaee, Immune escape: A critical hallmark in solid tumors, Life Sciences, 258 (2020).
[16]. D.D. Wu, W.R. Si, M.J. Wang, S.U. Lv, A.L. Ji, Y.Z. Li, Hydrogen sulfide in cancer: Friend or foe?, Nitric Oxide-Biology and Chemistry, 50 (2015) 38-45.
[17]. D.Q. He, F.L. Liu, S.J. Cui, N. Jiang, H.J. Yu, Y.H. Zhou, Y. Liu, X.X. Kou, Mechanical load-induced H<sub>2</sub>S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1, Stem Cell Research & Therapy, 11 (2020).
[18]. H.R. Zhu, S. Blake, K.T. Chan, R.B. Pearson, J. Kang, Cystathionine β-Synthase in Physiology and Cancer, Biomed Research International, 2018 (2018).
[19]. A. Dey, S. Prabhudesai, Y.S. Zhang, G. Rao, K. Thirugnanam, M.N. Hossen, S.K.D. Dwivedi, R. Ramchandran, P. Mukherjee, R. Bhattacharya, Cystathione β-synthase regulates HIF-1α stability through persulfidation of PHD2, Science Advances, 6 (2020).
[20]. J.A. Machado-Neto, A.R.A. Cerqueira, S. Veríssimo, M.N. Muscará, S.K.P. Costa, L.R. Lopes, Hydrogen Sulfide Signaling in the Tumor Microenvironment: Implications in Cancer Progression and Therapy, Antioxidants & Redox Signaling, 40 (2024) 250-271.
[21]. A.A. Untereiner, A. Pavlidou, N. Druzhyna, A. Papapetropoulos, M.R. Hellmich, C. Szabo, Drug resistance induces the upregulation of H<sub>2</sub>S-producing enzymes in HCT116 colon cancer cells, Biochemical Pharmacology, 149 (2018) 174-185.
[22]. E. Stokes, T. Shuang, Y.J. Zhang, Y.X. Pei, M. Fu, B.Q. Guo, A. Parissenti, L.Y. Wu, R. Wang, G.D. Yang, Efflux inhibition by H<sub>2</sub>S confers sensitivity to doxorubicin-induced cell death in liver cancer cells, Life Sciences, 213 (2018) 116-125.
[23]. B.M. Pharoah, C.X.M. Zhang, V.S. Khodade, G. Keceli, C. McGinity, N. Paolocci, J.P. Toscano, Hydropersulfides (RSSH) attenuate doxorubicin-induced cardiotoxicity while boosting its anticancer action, Redox Biology, 60 (2023).
[24]. Z.W. Lee, X.Y. Teo, E.Y.W. Tay, C.H. Tan, T. Hagen, P.K. Moore, L.W. Deng, Utilizing hydrogen sulfide as a novel anti-cancer agent by targeting cancer glycolysis and pH imbalance, British Journal of Pharmacology, 171 (2014) 4322-4336.
[25]. S. Lu, Y. Gao, X.L. Huang, X.H. Wang, GYY4137, a hydrogen sulfide ( H2S) donor, shows potent anti- hepatocellular carcinoma activity through blocking the STAT3 pathway, International Journal of Oncology, 44 (2014) 1259-1267.
[26]. C. Szabo, C. Coletta, C. Chao, K. Módis, B. Szczesny, A. Papapetropoulos, M.R. Hellmich, Tumor-derived hydrogen sulfide, produced by cystathionine-β-synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer, Proceedings of the National Academy of Sciences of the United States of America, 110 (2013) 12474-12479.
[27]. M. Chattopadhyay, R. Kodela, N. Nath, A. Barsegian, D. Boring, K. Kashfi, Hydrogen sulfide-releasing aspirin suppresses NF-κB signaling in estrogen receptor negative breast cancer cells in vitro and in vivo, Biochemical Pharmacology, 83 (2012) 723-732.
[28]. M. Akbari, E. Sogutdelen, S. Juriasingani, A. Sener, Hydrogen Sulfide: Emerging Role in Bladder, Kidney, and Prostate Malignancies, Oxidative Medicine and Cellular Longevity, 2019 (2019).
[29]. B.D. Manning, A. Toker, AKT/PKB Signaling: Navigating the Network, Cell, 169 (2017) 381-405.
[30]. J.A. Engelman, J. Luo, L.C. Cantley, The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism, Nature Reviews Genetics, 7 (2006) 606-619.
[31]. K. Kandasamy, R.K. Srivastava, Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in non-small cell lung cancer cells, Cancer Research, 62 (2002) 4929-4937.
[32]. T.H. Yue, J.C. Li, J. Zhu, S. Zuo, X. Wang, Y.C. Liu, J. Liu, X.Y. Liu, P.Y. Wang, S.W. Chen, Hydrogen Sulfide Creates a Favorable Immune Microenvironment for Colon Cancer, Cancer Research, 83 (2023) 595-612.
Cite this article
Hou,F. (2025). The Molecular Mechanism of Hydrogen Sulfide Regulation on Nasopharyngeal Carcinoma Cell Growth. Theoretical and Natural Science,102,1-8.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of ICEGEE 2025 Symposium: Impact of Technological Innovation on Energy Efficiency in European Countries
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).