Research Article
Open access
Published on 17 April 2025
Download pdf
Zhang,W. (2025). The Role of Gut Microbiota in the Development of Colorectal Cancer (CRC). Theoretical and Natural Science,93,19-25.
Export citation

The Role of Gut Microbiota in the Development of Colorectal Cancer (CRC)

Weicheng Zhang *,1,
  • 1 Shanghai Experimental Foreign Language School Puxi Campus, Shanghai, China

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2753-8818/2025.22053

Abstract

In recent years, CRC has gradually become one of the most common and deadliest types of cancer worldwide. Numerous studies in modern biology have explored the gut microbiota, revealing an inseparable relationship between microbial composition and CRC development. Currently, multiple articles suggest that microbial products can help promote or inhibit the formation of tumor microenvironment, while different dietary can help reshape the distribution of gut microbiota. This retrospective article aims to summarize previous experimental findings on how gut microbiota and dietary affect tumor progression through microbial products and propose possible future research directions as well. Short chain fatty acids and secondary bile acids mainly used to regulate the tumor microenvironment and has been widely studied. Additionally, research indicates that high protein and high dietary fiber diet with Omega-3 fatty acids contributes to the formation of SCFAs, thus reduced intestinal inflammatory response and reduces the risk of CRC induction.

Keywords

CRC, gut microbiota, microbial products, dietary

[1]. Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem Sci. 2016;41(3):211-218. doi:10.1016/j.tibs.2015.12.001

[2]. Waldecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon. J Nutr Biochem. 2008;19(9):587-593. doi:10.1016/j.jnutbio.2007.08.002

[3]. Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128-139. doi:10.1016/j.immuni.2013.12.007

[4]. Lavoie S, Chun E, Bae S, et al. Expression of Free Fatty Acid Receptor 2 by Dendritic Cells Prevents Their Expression of Interleukin 27 and Is Required for Maintenance of Mucosal Barrier and Immune Response Against Colorectal Tumors in Mice. Gastroenterology. 2020;158(5):1359-1372.e9. doi:10.1053/j.gastro.2019.12.027

[5]. Brennan CA, Clay SL, Lavoie SL, et al. Fusobacterium nucleatum drives a pro-inflammatory intestinal microenvironment through metabolite receptor-dependent modulation of IL-17 expression. Gut Microbes. 2021;13(1):1987780. doi:10.1080/19490976.2021.1987780

[6]. Wang G, Huang S, Wang Y, et al. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci CMLS. 2019;76(20):3917-3937. doi:10.1007/s00018-019-03190-6

[7]. Payne CM, Bernstein C, Dvorak K, Bernstein H. Hydrophobic bile acids, genomic instability, Darwinian selection, and colon carcinogenesis. Clin Exp Gastroenterol. 2008;1:19-47. doi:10.2147/ceg.s4343

[8]. Kong Y, Bai PS, Sun H, Nan KJ, Chen NZ, Qi XG. The deoxycholic acid targets miRNA-dependent CAC1 gene expression in multidrug resistance of human colorectal cancer. Int J Biochem Cell Biol. 2012;44(12):2321-2332. doi:10.1016/j.biocel.2012.08.006

[9]. Qiao D, Gaitonde SV, Qi W, Martinez JD. Deoxycholic acid suppresses p53 by stimulating proteasome-mediated p53 protein degradation. Carcinogenesis. 2001;22(6):957-964. doi:10.1093/carcin/22.6.957

[10]. Romagnolo DF, Chirnomas RB, Ku J, et al. Deoxycholate, an endogenous tumor promoter and DNA damaging agent, modulates BRCA-1 expression in apoptosis-sensitive epithelial cells: loss of BRCA-1 expression in colonic adenocarcinomas. Nutr Cancer. 2003;46(1):82-92. doi:10.1207/S15327914NC4601_11

[11]. Nguyen TT, Lian S, Ung TT, Xia Y, Han JY, Jung YD. Lithocholic Acid Stimulates IL-8 Expression in Human Colorectal Cancer Cells Via Activation of Erk1/2 MAPK and Suppression of STAT3 Activity. J Cell Biochem. 2017;118(9):2958-2967. doi:10.1002/jcb.25955

[12]. Lee YS, Choi I, Ning Y, et al. Interleukin-8 and its receptor CXCR2 in the tumour microenvironment promote colon cancer growth, progression and metastasis. Br J Cancer. 2012;106(11):1833-1841. doi:10.1038/bjc.2012.177

[13]. Hang S, Paik D, Yao L, et al. Bile acid metabolites control T(H)17 and T(reg) cell differentiation. Nature. 2019;576(7785):143-148. doi:10.1038/s41586-019-1785-z

[14]. Pardi DS, Loftus EVJ, Kremers WK, Keach J, Lindor KD. Ursodeoxycholic acid as a chemopreventive agent in patients with ulcerative colitis and primary sclerosing cholangitis. Gastroenterology. 2003;124(4):889-893. doi:10.1053/gast.2003.50156

[15]. Zhang H, Xu H, Zhang C, Tang Q, Bi F. Ursodeoxycholic acid suppresses the malignant progression of colorectal cancer through TGR5-YAP axis. Cell Death Discov. 2021;7(1):207. doi:10.1038/s41420-021-00589-8

[16]. Knights D, Ward TL, McKinlay CE, et al. Rethinking “enterotypes”. Cell Host Microbe. 2014;16(4):433-437. doi:10.1016/j.chom.2014.09.013

[17]. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761-1772. doi:10.2337/db06-1491

[18]. Bisanz JE, Upadhyay V, Turnbaugh JA, Ly K, Turnbaugh PJ. Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet. Cell Host Microbe. 2019;26(2):265-272.e4. doi:10.1016/j.chom.2019.06.013

[19]. Singh RP, Halaka DA, Hayouka Z, Tirosh O. High-Fat Diet Induced Alteration of Mice Microbiota and the Functional Ability to Utilize Fructooligosaccharide for Ethanol Production. Front Cell Infect Microbiol. 2020;10:376. doi:10.3389/fcimb.2020.00376

[20]. de Wit N, Derrien M, Bosch-Vermeulen H, et al. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am J Physiol Gastrointest Liver Physiol. 2012;303(5):G589-599. doi:10.1152/ajpgi.00488.2011

[21]. Newell C, Bomhof MR, Reimer RA, Hittel DS, Rho JM, Shearer J. Ketogenic diet modifies the gut microbiota in a murine model of autism spectrum disorder. Mol Autism. 2016;7(1):37. doi:10.1186/s13229-016-0099-3

[22]. Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019;47:529-542. doi:10.1016/j.ebiom.2019.08.032

[23]. Ang QY, Alexander M, Newman JC, et al. Ketogenic Diets Alter the Gut Microbiome Resulting in Decreased Intestinal Th17 Cells. Cell. 2020;181(6):1263-1275.e16. doi:10.1016/j.cell.2020.04.027

[24]. Hjorth MF, Blædel T, Bendtsen LQ, et al. Prevotella-to-Bacteroides ratio predicts body weight and fat loss success on 24-week diets varying in macronutrient composition and dietary fiber: results from a post-hoc analysis. Int J Obes 2005. 2019;43(1):149-157. doi:10.1038/s41366-018-0093-2

[25]. De Filippo C, Cavalieri D, Di Paola M, et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A. 2010;107(33):14691-14696. doi:10.1073/pnas.1005963107

[26]. Spinler JK, Oezguen N, Runge JK, et al. Dietary impact of a plant-derived microRNA on the gut microbiome. ExRNA. 2020;2:11. doi:10.1186/s41544-020-00053-2

[27]. Wu GD, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105-108. doi:10.1126/science.1208344

[28]. Costantini L, Molinari R, Farinon B, Merendino N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int J Mol Sci. 2017;18(12). doi:10.3390/ijms18122645

[29]. Huang Y, Liu F, Lai J, et al. The adjuvant treatment role of ω-3 fatty acids by regulating gut microbiota positively in the acne vulgaris. J Dermatol Treat. 2024;35(1):2299107. doi:10.1080/09546634.2023.2299107

[30]. Companys J, Calderón-Pérez L, Pla-Pagà L, et al. Effects of enriched seafood sticks (heat-inactivated B. animalis subsp. lactis CECT 8145, inulin, omega-3) on cardiometabolic risk factors and gut microbiota in abdominally obese subjects: randomized controlled trial. Eur J Nutr. 2022;61(7):3597-3611. doi:10.1007/s00394-022-02904-0

[31]. Makki K, Deehan EC, Walter J, Bäckhed F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe. 2018;23(6):705-715. doi:10.1016/j.chom.2018.05.012

[32]. Hall DA, Voigt RM, Cantu-Jungles TM, et al. An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson’s disease participants. Nat Commun. 2023;14(1):926. doi:10.1038/s41467-023-36497-x

[33]. Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488(7410):178-184. doi:10.1038/nature11319

Cite this article

Zhang,W. (2025). The Role of Gut Microbiota in the Development of Colorectal Cancer (CRC). Theoretical and Natural Science,93,19-25.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Environmental Geoscience and Earth Ecology

Conference website: https://2025.icegee.org/
ISBN:978-1-83558-976-2(Print) / 978-1-83558-975-5(Online)
Conference date: 16 June 2025
Editor:Alan Wang
Series: Theoretical and Natural Science
Volume number: Vol.93
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).