1. Introduction
The explicit formula of Riemann zeta function over \( 2n (n∈N) \) is originally given by:
\( ζ(2n)=\frac{|{B_{2n}}|{(2π)^{2n}}}{2(2n)!} \)
Where \( {B_{n}} \) denotes as the nth Bernoulli number.
Also, the values of \( {B_{n}} \) can be evaluated recursively by this following relationship, and it is the only simplest way to calculate their exact values:
\( {B_{n}}=-\frac{1}{n+1}\sum _{k=0}^{n-1}( \begin{array}{c} n+1 \\ k \end{array} ){B_{k}} \)
Which is just being rewritten from the identity that \( \sum _{k=0}^{n}( \begin{array}{c} n+1 \\ k \end{array} ){B_{k}}=0 . \)
However, when we are evaluating \( ζ(2n) \) based on Bernoulli numbers, then we have to find the Bernoulli numbers at corresponding term first, then plug them in into the explicit formula. It will be very complex especially when \( n \) becomes larger.
However, there is a way to eliminate the Bernoulli numbers in the formula when we are calculating \( ζ(2n) \) , which can simplify the process at some extend.
That is, the recursive formula of Riemann zeta function \( ζ(n) \) at even natural numbers can be expressed by the following equation:
\( ζ(2n)={(-1)^{n-1}}(\frac{n{π^{2n}}}{(2n+1)!}+\sum _{k=1}^{n-1}{(-1)^{k}}\frac{{π^{2(n-k)}}ζ(2k)}{(2(n-k)+1)!}) for n≥2 \)
From using this recursive formula:
\( ζ(2)=\frac{{π^{2}}}{3!}=\frac{{π^{2}}}{6} \)
\( ζ(4)=-\frac{{2π^{4}}}{5!}+\frac{{π^{2}}}{3!}ζ(2)=\frac{{π^{4}}}{90} \)
\( ζ(6)=\frac{{3π^{6}}}{7!}-\frac{{π^{4}}}{5!}ζ(2)+\frac{{π^{2}}}{3!}ζ(4)=\frac{{π^{6}}}{945} \)
\( ζ(8)=-\frac{{4π^{8}}}{9!}-\frac{{π^{6}}}{7!}ζ(2)+\frac{{π^{4}}}{5!}ζ(4)-\frac{{π^{2}}}{3!}ζ(6)=\frac{{π^{8}}}{9450} \)
…
This formula is derived from the principles of elementary symmetric polynomials and the associations between them and the values of zeta function. Also, it is equivalent to the original explicit formula of zeta function, that is, \( ζ(2n)=\frac{|{B_{2n}}|{(2π)^{2n}}}{2(2n)!} \) .
2. Elementary symmetric polynomials & Newton’s identities
For variables \( {x_{1}},…,{x_{k}} (k \gt 1), \) let \( {p_{k}}({x_{1}},…,{x_{n}}) \) be the power sum \( \sum _{i=1}^{n}x_{i}^{k} \) and \( {e_{k}}({x_{1}},…,{x_{n}}) \) be the elementary symmetric polynomial such that \( {e_{k}}({x_{1}},…,{x_{n}})=\sum _{1≤{i_{1}} \lt {i_{2}} \lt … \lt {i_{k}}}{x_{{i_{1}}}}\cdot {x_{{i_{2}}}}…{x_{{i_{k}}}} \) .
For example, we know that \( {(a+b)^{2}}={a^{2}}+2ab+{b^{2}} \) , replace \( a+b \) by \( {p_{1}} \) ; \( {a^{2}}+{b^{2}} \) by \( {p_{2}};ab by {e_{2}} and we obtain p_{1}^{2}=2{e_{2}}+{p_{2}}⇒{e_{2}}=\frac{1}{2}(p_{1}^{2}-{p_{2}}) . \) This is important because it generalizes the following summation identity:
\( \sum _{1≤i \lt j}ij=\frac{1}{2}[{(\sum _{n=1}^{∞}i)^{2}}-\sum _{n=1}^{∞}{j^{2}}] \)
Similarity for \( {e_{3}}, \) expanding \( {(a+b+c)^{3}} \) and do some elementary algebra:
\( ⇒{(a+b+c)^{3}}={a^{3}}+{b^{3}}+{c^{3}}+6abc+{3a^{2}}b+{3a^{2}}c+{3b^{2}}a+{3b^{2}}c+{3c^{2}}a+{3c^{2}}b \)
\( =({a^{3}}+{b^{3}}+{c^{3}})+6abc+{3a^{2}}(b+c+a-a)+{3b^{2}}(a+c+b-b)+{3c^{2}}(a+b+c-c) \)
\( =({a^{3}}+{b^{3}}+{c^{3}})+6abc+({3a^{2}}+{3b^{2}}+{3c^{2}})(a+b+c)-({3a^{3}}+{3b^{3}}+{3c^{3}}) \)
\( =-2({a^{3}}+{b^{3}}+{c^{3}})+6abc+3({a^{2}}+{b^{2}}+{c^{2}})(a+b+c) \)
\( ⇒ p_{1}^{3}=-2{p_{3}}+6{e_{3}}+3{p_{2}}{p_{1}}⇒{e_{3}}=\frac{1}{6}(p_{1}^{3}-3{p_{1}}{p_{2}}+2{p_{3}}) \)
We can keep deriving, but it becomes complicated when \( k \) goes larger since it involves a lot of substitution and the coefficients are irregular.
However, there is a way to make it simpler:
Define \( E(t) \) to be the generating function of \( {e_{k}}, \) that is,
\( E(t)=\sum _{k=1}^{∞}{e_{k}}{t^{k}} \)
It can be observed that by the definition of \( {e_{k}} \) ,
\( E(t)=\prod _{i=1}^{n}(1+{x_{i}}t) \)
Taking logarithms from both sides:
( \( Note that ln{X} \) is an alternative notation for \( {log_{e}}{X} \) )
\( ln{E(t)}=ln{\prod _{i=1}^{n}(1+{x_{i}}t)=\sum _{i=1}^{n}ln{(1+{x_{i}}t)}} \)
\( ∵ln{(1+{x_{i}}t)=}\sum _{k=1}^{∞}\frac{{(-1)^{k-1}}{({x_{i}}t)^{k}}}{k} (Taylor \prime s expansion for ln{(1+X)}) \)
\( ∴ln{E(t)=\sum _{k=1}^{∞}\frac{{(-1)^{k-1}}{p_{k}}{t^{k}}}{k}} \)
And taking derivatives respect to \( t \) from both sides of the equation:
\( \frac{E \prime (t)}{E(t)}=\sum _{k=1}^{∞}{(-1)^{k-1}}{p_{k}}{t^{k-1}} \)
\( ⇒E \prime (t)=E(t)\sum _{k=1}^{∞}{(-1)^{k-1}}{p_{k}}{t^{k-1}} \)
\( =(1+{e_{1}}t+{e_{2}}{t^{2}}+…)({p_{1}}-{p_{2}}t+{{p_{3}}t^{2}}-…) \)
By comparing and equating the coefficient of \( {t^{k-1}} \) and therefore obtain:
\( k{e_{k}}=\sum _{i=1}^{k}{(-1)^{k-1}}{{e_{k-i}}p_{i}} \)
Which is so called Newton’s Identities for elementary symmetric polynomials. From using this principle, we may express \( {e_{k}} \) in terms of \( {p_{1}}, {p_{2}},…,{p_{k}} \) (Note that \( {e_{1}}={p_{1}}) \) :
\( {e_{1}}={p_{1}} \)
\( {e_{2}}=\frac{1}{2}(p_{1}^{2}-{p_{2}}) \)
\( {e_{3}}=\frac{1}{6}(p_{1}^{3}-3{p_{1}}{p_{2}}+2{p_{3}}) \)
\( {e_{4}}=\frac{1}{24}(p_{1}^{4}-6p_{1}^{2}{p_{2}}+8{p_{1}}{p_{3}}+3p_{2}^{2}-6{p_{4}}) \)
…
This property will further be using to derive the recursive formula of \( ζ(2k) \) essentially.
3. Associations with Riemann zeta functions
According to Euler’s product formula, for any polynomial function \( P(x) \) , it can be written as
\( P(x)={a_{n}}\prod _{i=1}^{n}(x-{x_{i}}) \)
where \( {x_{1}},{x_{2}},…,{x_{i}} \) are the roots of \( P(x) \) and \( {a_{n}} \) is the leading coefficient of \( P(x) \) .
Let \( P(x)=sin{x} \) , then
\( sin{x}=x\prod _{n=1}^{∞}(1-\frac{{x^{2}}}{{(nπ)^{2}}}) \)
\( ⟹\frac{sin{x}}{x}=\prod _{n=1}^{∞}(1-\frac{{x^{2}}}{{(nπ)^{2}}}) \)
And associate it with Taylor’s expansion of \( \frac{sin{x}}{x} \) :
\( \prod _{n=1}^{∞}(1-\frac{{x^{2}}}{{(nπ)^{2}}})=\sum _{n=1}^{∞}\frac{{(-1)^{n-1}}{x^{2n-2}}}{(2n-1)!} \)
Equating the coefficients of \( {x^{2}},{x^{4}},…,{x^{2n}}: \)
\( {x^{2}}:-\frac{1}{3!}=-\frac{1}{{π^{2}}}\sum _{i=1}^{∞}\frac{1}{{i^{2}}} \)
\( {x^{4}}:\frac{1}{5!}=\frac{1}{{π^{4}}}\sum _{1≤i \lt j}\frac{1}{{i^{2}}{j^{2}}} \)
\( ⋮ \)
\( {x^{2n}}:\frac{{(-1)^{n}}}{(2n+1)!}=\frac{{(-1)^{n}}}{{π^{2n}}}\sum _{1≤{i_{1}} \lt {i_{2}} \lt … \lt {i_{n}}}\frac{1}{i_{1}^{2}i_{2}^{2}…i_{n}^{2}}(n \gt 2) \)
\( {⇒x^{2n}}:\frac{1}{(2n+1)!}=\frac{1}{{π^{2n}}}\sum _{1≤{i_{1}} \lt {i_{2}} \lt … \lt {i_{n}}}\frac{1}{i_{1}^{2}i_{2}^{2}…i_{n}^{2}}(n \gt 2) \)
The summation part
\( \sum _{1≤{i_{1}} \lt {i_{2}} \lt … \lt {i_{n}}}\frac{1}{i_{1}^{2}i_{2}^{2}…i_{n}^{2}}(n \gt 2) \)
can be considered as an elementary symmetric polynomial \( {e_{n}}({x_{1}},…,{x_{k}}) \) where \( {x_{1}},{x_{2}},…,{x_{k}}=\frac{1}{i_{1}^{2}},\frac{1}{i_{2}^{2}},…,\frac{1}{i_{n}^{2}}(n=k) \)
\( ∴{e_{n}}=\sum _{1≤{i_{1}} \lt {i_{2}} \lt … \lt {i_{n}}}\frac{1}{i_{1}^{2}i_{2}^{2}…i_{n}^{2}}=\frac{{π^{2n}}}{(2n+1)!} \)
Therefore, the power sum \( {p_{n}}({x_{1}},…,{x_{k}}) \) has
\( {p_{n}}=\sum _{i=1}^{∞}\frac{1}{{i^{2n}}}=ζ(2n) \)
Associate with Newton’s identities which has been proven in 1.1:
\( n{e_{n}}=\sum _{k=1}^{n}{(-1)^{k-1}}{{e_{n-k}}p_{n}} \)
\( ⇒\frac{{nπ^{2n}}}{(2n+1)!}=\sum _{k=1}^{n}{(-1)^{k-1}}\frac{{π^{2(n-k)}}}{(2(n-k)+1)!}ζ(2k) \)
\( ⇒\frac{{nπ^{2n}}}{(2n+1)!}=\sum _{k=1}^{n-1}{(-1)^{k-1}}\frac{{π^{2(n-k)}}}{(2(n-k)+1)!}ζ(2k)+{(-1)^{n-1}}ζ(2n) \)
\( ⇒{(-1)^{n-1}}ζ(2n)=\frac{{nπ^{2n}}}{(2n+1)!}+\sum _{k=1}^{n-1}{(-1)^{k}}\frac{{π^{2(n-k)}}}{(2(n-k)+1)!}ζ(2k) \)
\( ⇒ζ(2n)={(-1)^{n-1}}(\frac{{nπ^{2n}}}{(2n+1)!}+\sum _{k=1}^{n-1}{(-1)^{k}}\frac{{π^{2(n-k)}}}{(2(n-k)+1)!}ζ(2k)),for n≥2 \)
Which obtain the recursive formula for \( ζ(2n) \) where \( n≥2 . \)
4. Associations with the explicit formula of Riemann zeta functions
For \( n∈{N^{*}} \) , the explicit formula of Riemann zeta function is given by:
\( ζ(2n)=\frac{|{B_{2n}}|{(2π)^{2n}}}{2(2n)!} \)
where \( {B_{n}} \) is the \( n \) th Bernoulli number.
Then according to the recursive formula derived before, the equation
\( \frac{|{B_{2n}}|{(2π)^{2n}}}{2(2n)!}={(-1)^{n-1}}(\frac{{nπ^{2n}}}{(2n+1)!}+\sum _{k=1}^{n-1}{(-1)^{k}}\frac{{π^{2(n-k)}}}{(2(n-k)+1)!}ζ(2k)) for n \gt 1 \)
must be satisfied.
Lemma:
\( xcot{x}=1-\sum _{n=1}^{∞}\frac{{2^{2n}}|{B_{2n}}|}{(2n)!}{x^{2n}} \)
Proof:
Recall that the generating function of Bernoulli numbers \( {B_{n}} \) is
\( \frac{x}{{e^{x}}-1}=\sum _{n=0}^{∞}\frac{{B_{n}}}{n!}{x^{n}} for |x| \lt 2π \)
\( ⟹\frac{x}{2}∙\frac{{e^{x}}+1}{{e^{x}}-1}=1+\sum _{n=2}^{∞}\frac{{B_{n}}}{n!}{x^{n}} \)
Since LHS is an even function and \( {B_{2n+1}}=0 \) for \( n=1,2,3… \)
\( ⟹\frac{x}{2}∙\frac{{e^{x}}+1}{{e^{x}}-1}=\sum _{n=0}^{∞}\frac{{B_{2n}}}{(2n)!}{x^{2n}} for |x| \lt 2π \)
\( ⟹\frac{x}{2}∙\frac{{e^{\frac{x}{2}}}+{e^{-\frac{x}{2}}}}{{e^{\frac{x}{2}}}-{e^{-\frac{x}{2}}}}=\sum _{n=0}^{∞}\frac{{B_{2n}}}{(2n)!}{x^{2n}} \)
\( ⟹\frac{x}{2}coth{\frac{x}{2}}=\sum _{n=0}^{∞}\frac{{B_{2n}}}{(2n)!}{x^{2n}} \)
\( ⟹xcoth{x}=\sum _{n=0}^{∞}\frac{{B_{2n}}{2^{2n}}}{(2n)!}{x^{2n}}, |x| \lt π \)
Since \( coth{ix}=-icot{x} \) , substitute \( ix→x \) to obtain:
\( ixcoth{ix}=\sum _{n=0}^{∞}\frac{{(-1)^{n}}{B_{2n}}{2^{2n}}}{(2n)!}{x^{2n}} \)
\( ⟹xcot{x}=\sum _{n=0}^{∞}\frac{{(-1)^{n}}{B_{2n}}{2^{2n}}}{(2n)!}{x^{2n}}, |x| \lt π \)
\( ∵{(-1)^{n+1}}{B_{2n}}=|{B_{2n}}| \)
\( ∴xcot{x}=-\sum _{n=0}^{∞}\frac{|{B_{2n}}|{2^{2n}}}{(2n)!}{x^{2n}} \)
\( =1-\sum _{n=1}^{∞}\frac{|{B_{2n}}|{2^{2n}}}{(2n)!}{x^{2n}}, |x| \lt π \)
As we successfully obtain the generating function of \( {B_{2k}} \) , we may use it to deduce the generating function of \( ζ(2k) \) :
Since
\( ζ(2k)=\frac{|{B_{2k}}|{(2π)^{2k}}}{2(2k)!} \) (1)
and
\( xcot{x}=1-\sum _{k=1}^{∞}\frac{{2^{2k}}|{B_{2k}}|}{(2k)!}{x^{2k}} \) (2)
By substituting \( x=πx \) into (2):
\( ⟹πxcot{πx}=1-\sum _{k=1}^{∞}\frac{{2^{2k}}|{B_{2k}}|}{(2k)!}{(πx)^{2k}} \)
\( ⟹1-πxcot{πx}=\sum _{k=1}^{∞}\frac{{(2π)^{2k}}|{B_{2k}}|}{(2k)!}{x^{2k}} \)
\( ⟹\frac{1}{2}(1-πxcot{πx})=\sum _{k=1}^{∞}\frac{{(2π)^{2k}}|{B_{2k}}|}{2(2k)!}{x^{2k}} \)
And associate with (1):
\( ⟹\frac{1}{2}(1-πxcot{πx})=\sum _{k=1}^{∞}ζ(2k){x^{2k}} \)
Now consider another series which
\( xcot{x}=\sum _{k=1}^{∞}{a_{k}}{x^{2k}} \)
Where \( {a_{k}} \) is any real valued function
\( ⇒cos{x}=\frac{sin{x}}{x}\sum _{k=0}^{∞}{a_{k}}{x^{2k}} \)
\( ⇒\sum _{n=0}^{∞}\frac{{(-1)^{n}}{x^{2n}}}{(2n)!}=\sum _{n=0}^{∞}\frac{{(-1)^{n+1}}{x^{2n}}}{(2n+1)!}\sum _{k=0}^{∞}{a_{k}}{x^{2k}} \)
\( =\sum _{n=0}^{∞}(\sum _{k=0}^{n}{(-1)^{k}}\frac{{a_{n-k}}}{(2k+1)!}){x^{2n}} \)
By equating the coefficients of \( {x^{2n}} \) therefore obtain:
\( \frac{{(-1)^{n}}}{(2n)!}=\sum _{k=0}^{n}{(-1)^{k}}\frac{{a_{n-k}}}{(2k+1)!} \)
\( ⇒{a_{n}}=\frac{{(-1)^{n}}}{(2n)!}-\sum _{k=1}^{n}{(-1)^{k}}\frac{{a_{n-k}}}{(2k+1)!} \)
\( =\frac{{2n(-1)^{n}}}{(2n+1)!}-\sum _{k=1}^{n-1}{(-1)^{k}}\frac{{a_{n-k}}}{(2k+1)!} \)
From (3), it can be deduced that
\( {a_{n}}=-\frac{2ζ(2n)}{{π^{2n}}} \)
Therefore,
\( -\frac{2ζ(2n)}{{π^{2n}}}=\frac{{2n(-1)^{n}}}{(2n+1)!}-\sum _{k=1}^{n-1}{(-1)^{k}}\frac{2ζ(2(n-k))}{(2k+1)!{π^{2(n-k)}}} \)
\( ⇒ζ(2n)=\frac{{n{π^{2n}}(-1)^{n-1}}}{(2n+1)!}-\sum _{k=1}^{n-1}{(-1)^{k}}\frac{ζ(2(n-k))}{(2k+1)!} \)
\( ={(-1)^{n-1}}(\frac{{nπ^{2n}}}{(2n+1)!}+\sum _{k=1}^{n-1}{(-1)^{k}}\frac{{π^{2k}}}{(2(n-k)+1)!}ζ(2k)) \)
Which corresponds to the recursive formula of \( ζ(2n) \)
Therefore, it has been successfully proven the equivalent relationship between the recursive formula and the explicit formula for Riemann zeta function at even positive integers.
5. Conclusion
By associating the coefficients of the terms of Taylor’s expansion and Euler’s product of \( \frac{sin{x}}{x} \) with the essential properties of elementary symmetric polynomials (Newton’s identities), the recursive formula of Riemann zeta function at natural even numbers can be expressed by the previous values of it. This method of evaluating the values of zeta function at large even numbers, can be helpful in particular occasion than applying the explicit formula since it is difficult to calculate the values of large Bernoulli numbers.
References
[1]. https://en.wikipedia.org/wiki/Riemann_zeta_function
[2]. Titchmarsh, E.C., “The Theory of the Riemann zeta-function.” Oxford Science Publications (1986)
[3]. Segarra, Elan, “An Exploration of Riemann Zeta Function and its application to the Theory of Prime Distribution” (2006). HMC Senior Theses. 189.
[4]. H.M. Edwards., Riemann’s zeta function. Dover Publications, Inc., Mineola, N.Y. (2001)
[5]. https://brilliant.org/wiki/riemann-zeta-function/
[6]. Pascal Sebah and Xavier Gourdon, “Introduction on Bernoulli numbers” (2002)
[7]. https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial
Cite this article
Chen,Y. (2025). An Approach to the Recursive Formula of Riemann Zeta Function at Even Natural Numbers. Theoretical and Natural Science,108,48-56.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 4th International Conference on Computing Innovation and Applied Physics
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. https://en.wikipedia.org/wiki/Riemann_zeta_function
[2]. Titchmarsh, E.C., “The Theory of the Riemann zeta-function.” Oxford Science Publications (1986)
[3]. Segarra, Elan, “An Exploration of Riemann Zeta Function and its application to the Theory of Prime Distribution” (2006). HMC Senior Theses. 189.
[4]. H.M. Edwards., Riemann’s zeta function. Dover Publications, Inc., Mineola, N.Y. (2001)
[5]. https://brilliant.org/wiki/riemann-zeta-function/
[6]. Pascal Sebah and Xavier Gourdon, “Introduction on Bernoulli numbers” (2002)
[7]. https://en.wikipedia.org/wiki/Elementary_symmetric_polynomial