Research Article
Open access
Published on 15 May 2025
Download pdf
Wang,Y. (2025). Comparative Insights on Traditional and Genetic Vaccines: Past Progress and Future Outlook. Theoretical and Natural Science,111,17-22.
Export citation

Comparative Insights on Traditional and Genetic Vaccines: Past Progress and Future Outlook

Yiting Wang *,1,
  • 1 Queen’s University, Kingston, Canada

* Author to whom correspondence should be addressed.

https://doi.org/10.54254/2753-8818/2025.AU22960

Abstract

This review explores the evolution, mechanisms, and future potential of vaccines, with a comparative focus on traditional vaccines and emerging genetic vaccines. Traditional vaccines—such as inactivated, attenuated, and subunit types—have played a pivotal role in public health but face limitations in production complexity, efficacy, and storage. In contrast, genetic vaccines, particularly mRNA-based, offer higher efficiency, rapid development, and customizable antigen targeting enabled by gene-editing technologies like PCR and CRISPR. Despite challenges such as stability, delivery systems, and short-lived immunity in certain cases, genetic vaccines show promising adaptability in combating viral mutations and may redefine therapeutic strategies. The paper argues that with ongoing advances in biotechnology, genetic vaccines could gradually replace conventional types, shaping a new era in preventive medicine and global immunization.

Keywords

mRNA vaccines, genetic vaccines, traditional vaccines, immunization technology, public health

[1]. Orenstein, W. A., Offit, P. A., Edwards, K. M., & Plotkin, S. A. (2022). Plotkin's Vaccines, E-Book. Elsevier Health Sciences.

[2]. Alberts B, Johnson A, Lewis J, et al. (2002). Molecular Biology of the Cell. 4th edition. New York: Garland Science; https://www.ncbi.nlm.nih.gov/books/NBK21054/?depth=2

[3]. Riera Romo, M., Pérez-Martínez, D., & Castillo Ferrer, C. (2016). Innate immunity in vertebrates: an overview. Immunology, 148(2), 125–139. https://doi.org/10.1111/imm.12597

[4]. Siegrist, C. A. (2008). Vaccine immunology. Vaccines, 5(1), 17-36.

[5]. Doherty, M., Buchy, P., Standaert, B., Giaquinto, C., & Prado-Cohrs, D. (2016). Vaccine impact: Benefits for human health. Vaccine, 34(52), 6707-6714.

[6]. Fine, P. E. (1993). Herd immunity: history, theory, practice. Epidemiologic reviews, 15(2), 265-302.

[7]. Luan, Guijie & Yao, Hongyan & Yin, Dapeng & Liu, Jianjun. (2024). Trends and Age-Period-Cohort Effect on Incidence of Varicella Under Age 35 — China, 2005–2021. China CDC Weekly. 6. 390-395. 10.46234/ccdcw2024.076.

[8]. World Health Organization (2018). Rabies vaccines: WHO position paper, April 2018 - Recommendations. Vaccine, 36(37), 5500–5503. https://doi.org/10.1016/j.vaccine.2018.06.061

[9]. Kim, J., Vasan, S., Kim, J. H., & Ake, J. A. (2021). Current approaches to HIV vaccine development: a narrative review. Journal of the International AIDS Society, 24 Suppl 7(Suppl 7), e25793. https://doi.org/10.1002/jia2.25793

[10]. World Health Organization. Electronic address: sageexecsec@who.int (2017). Human papillomavirus vaccines: WHO position paper, May 2017-Recommendations. Vaccine, 35(43), 5753–5755. https://doi.org/10.1016/j.vaccine.2017.05.069

[11]. Gordillo Altamirano, F. L., & Barr, J. J. (2019). Phage Therapy in the Postantibiotic Era. Clinical microbiology reviews, 32(2), e00066-18. https://doi.org/10.1128/CMR.00066-18

[12]. Shors, T. (2017). Understanding viruses. Jones & Bartlett Publishers.

[13]. Pollard, A.J., Bijker, E.M. A guide to vaccinology: from basic principles to new developments. Nat Rev Immunol 21, 83–100 (2021). https://doi.org/10.1038/s41577-020-00479-7

[14]. Dolgin E. (2021). The tangled history of mRNA vaccines. Nature, 597(7876), 318–324. https://doi.org/10.1038/d41586-021-02483-w

[15]. Erlich, H. A. (1989). PCR technology (pp. 61-70). New York: Stockton press.

[16]. Pacesa, M., Pelea, O., & Jinek, M. (2024). Past, present, and future of CRISPR genome editing technologies. Cell, 187(5), 1076–1100. https://doi.org/10.1016/j.cell.2024.01.042

[17]. Sanders, B., Koldijk, M., & Schuitemaker, H. (2014). Inactivated Viral Vaccines. Vaccine Analysis: Strategies, Principles, and Control, 45–80. https://doi.org/10.1007/978-3-662-45024-6_2

[18]. Hajra, D., Datey, A., & Chakravortty, D. (2021). Attenuation Methods for Live Vaccines. Methods in molecular biology (Clifton, N.J.), 2183, 331–356. https://doi.org/10.1007/978-1-0716-0795-4_17

[19]. Jessica C. Stark et al., On-demand biomanufacturing of protective conjugate vaccines.Sci. Adv.7, eabe9444(2021). DOI:10.1126/sciadv.abe9444

[20]. Francis M. J. (2018). Recent Advances in Vaccine Technologies. The Veterinary clinics of North America. Small animal practice, 48(2), 231–241. https://doi.org/10.1016/j.cvsm.2017.10.002

[21]. Strassburg M. A. (1982). The global eradication of smallpox. American journal of infection control, 10(2), 53–59. https://doi.org/10.1016/0196-6553(82)90003-7

[22]. Vázquez, M., LaRussa, P. S., Gershon, A. A., Niccolai, L. M., Muehlenbein, C. E., Steinberg, S. P., & Shapiro, E. D. (2004). Effectiveness over time of varicella vaccine. Jama, 291(7), 851-855.

[23]. Sara Sousa Rosa, Duarte M.F. Prazeres, Ana M. Azevedo, Marco P.C. (2021). Marques, mRNA vaccines manufacturing: Challenges and bottlenecks, Vaccine, Volume 39, Issue 16, Pages 2190-2200, ISSN 0264-410X, https://doi.org/10.1016/j.vaccine.2021.03.038.

[24]. Watson-Jones, D., Changalucha, J., Whitworth, H., Pinto, L., Mutani, P., Indangasi, J., Kemp, T., Hashim, R., Kamala, B., Wiggins, R., Songoro, T., Connor, N., Mbwanji, G., Pavon, M. A., Lowe, B., Mmbando, D., Kapiga, S., Mayaud, P., de SanJosé, S., Dillner, J., … Baisley, K. (2022). Immunogenicity and safety of one-dose human papillomavirus vaccine compared with two or three doses in Tanzanian girls (DoRIS): an open-label, randomised, non-inferiority trial. The Lancet. Global health, 10(10), e1473–e1484. https://doi.org/10.1016/S2214-109X(22)00309-6

[25]. Wang, Z. Z., Li, M. Q., Wang, P., Yang, Z. X., Wei, L., Zeng, Y., Li, Y. P., Yan, L., Liu, X. E., & Zhuang, H. (2016). Comparative immunogenicity of hepatitis B vaccine with different dosages and schedules in healthy young adults in China. Vaccine, 34(8), 1034–1039. https://doi.org/10.1016/j.vaccine.2016.01.018

[26]. Wu, W., Wang, H., Li, K., Pekka Nuorti, J., Liu, D., Xu, D., Ye, J., Zheng, J., Fan, C., Wen, N., & An, Z. (2018). Recipient vaccine-associated paralytic poliomyelitis in China, 2010-2015. Vaccine, 36(9), 1209–1213. https://doi.org/10.1016/j.vaccine.2018.01.019

[27]. Korsman, S. N. J., van Zyl, G. U., Nutt, L., Andersson, M. I., & Preiser, W. (2012). Antiviral drugs–: history and obstacles. Virology, 36–41. https://doi.org/10.1016/B978-0-443-07367-0.00018-5

[28]. Park, J. W., Lagniton, P. N. P., Liu, Y., & Xu, R. H. (2021). mRNA vaccines for COVID-19: what, why and how. International journal of biological sciences, 17(6), 1446–1460. https://doi.org/10.7150/ijbs.59233

[29]. Karikó, K., Muramatsu, H., Welsh, F. A., Ludwig, J., Kato, H., Akira, S., & Weissman, D. (2008). Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Molecular therapy, 16(11), 1833-1840.

[30]. Simonsen, J., Lind, M., Witzigmann, D., Albertsen, C., Petersson, K., & Kulkarni, J. (2022). The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Advanced Drug Delivery Reviews, 188, 114416. https://doi.org/10.1016/j.addr.2022.114416

[31]. Dadonaite, B., Brown, J., McMahon, T. E., Farrell, A. G., Figgins, M. D., Asarnow, D., Stewart, C., Lee, J., Logue, J., Bedford, T., Murrell, B., Chu, H. Y., Veesler, D., & Bloom, J. D. (2024). Spike deep mutational scanning helps predict success of SARS-CoV-2 clades. Nature, 631(8021), 617–626. https://doi.org/10.1038/s41586-024-07636-1

[32]. Becker, T., Elbahesh, H., Reperant, L. A., Rimmelzwaan, G. F., & Osterhaus, A. D. M. E. (2021). Influenza Vaccines: Successes and Continuing Challenges. The Journal of infectious diseases, 224(12 Suppl 2), S405–S419. https://doi.org/10.1093/infdis/jiab269

[33]. Natesan, K., Isloor, S., Vinayagamurthy, B., Ramakrishnaiah, S., Doddamane, R., & Fooks, A. R. (2023). Developments in Rabies Vaccines: The Path Traversed from Pasteur to the Modern Era of Immunization. Vaccines, 11(4), 756. https://doi.org/10.3390/vaccines1104075

[34]. Burton, D. R., Ahmed, R., Barouch, D. H., Butera, S. T., Crotty, S., Godzik, A., Kaufmann, D. E., McElrath, M. J., Nussenzweig, M. C., Pulendran, B., Scanlan, C. N., Schief, W. R., Silvestri, G., Streeck, H., Walker, B. D., Walker, L. M., Ward, A. B., Wilson, I. A., & Wyatt, R. (2012). A Blueprint for HIV Vaccine Discovery. Cell host & microbe, 12(4), 396–407. https://doi.org/10.1016/j.chom.2012.09.008

[35]. Carlton R. M. (1999). Phage therapy: past history and future prospects. Archivum immunologiae et therapiae experimentalis, 47(5), 267–274.

[36]. Lin, J., Du, F., Long, M., & Li, P. (2022). Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review. Molecules (Basel, Switzerland), 27(6), 1857. https://doi.org/10.3390/molecules27061857

Cite this article

Wang,Y. (2025). Comparative Insights on Traditional and Genetic Vaccines: Past Progress and Future Outlook. Theoretical and Natural Science,111,17-22.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of ICBioMed 2025 Symposium: AI for Healthcare: Advanced Medical Data Analytics and Smart Rehabilitation

ISBN:978-1-80590-109-9(Print) / 978-1-80590-110-5(Online)
Conference date: 17 October 2025
Editor:Alan Wang
Series: Theoretical and Natural Science
Volume number: Vol.111
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).