References
[1]. Arnsten, A. F. (2009). ADHD and the prefrontal cortex. The Journal of Pediatrics, 154(5), I-S43. https://doi.org/10.1016/j.jpeds.2009.01.018
[2]. Polanczyk, G. V., Willcutt, E. G., Salum, G. A., Kieling, C., & Rohde, L. A. (2014). ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis. International Journal of Epidemiology, 43(2), 434–442. https://doi.org/10.1093/ije/dyt261
[3]. Nazarova, V. A., Sokolov, A. V., Chubarev, V. N., Tarasov, V. V., & Schiöth, H. B. (2022). Treatment of ADHD: Drugs, psychological therapies, devices, complementary and alternative methods as well as the trends in clinical trials. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.1066988
[4]. Team, E. W. (n.d.). methyl phenyl(piperidin-2-yl)acetate (CHEBI:84276). https://www.ebi.ac.uk/chebi/searchId.do?chebiId=84276
[5]. Team, E. W. (n.d.-a). dexmethylphenidate (CHEBI:51860). https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:51860
[6]. Blick, S. K. A., & Keating, G. M. (2007). Lisdexamfetamine. Pediatric Drugs, 9(2), 129–135. https://doi.org/10.2165/00148581-200709020-00007
[7]. Team, E. W. (n.d.). lisdexamfetamine (CHEBI:135925). https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:135925
[8]. Team, E. W. (n.d.-a). atomoxetine (CHEBI:127342). https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:127342
[9]. PubChem. (n.d.). Atomoxetine. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Atomoxetine
[10]. Dresel, S. H. J., Kung, M. T., Huang, X., Plössl, K., Hou, C., Shiue, C. Y., Karp, J., & Kung, H. F. (1999). In vivo imaging of serotonin transporters with [ 99m Tc]TRODAT-1 in nonhuman primates. European Journal of Nuclear Medicine and Molecular Imaging, 26(4), 342–347. https://doi.org/10.1007/s002590050396
[11]. Gamo, N. J., Wang, M., & Arnsten, A. F. (2010). Methylphenidate and atomoxetine enhance prefrontal function through Α2-Adrenergic and dopamine D1 receptors. Journal of the American Academy of Child & Adolescent Psychiatry, 49(10), 1011–1023. https://doi.org/10.1016/j.jaac.2010.06.015
[12]. Federici, M., Geracitano, R., Bernardi, G., & Mercuri, N. B. (2005). Actions of methylphenidate on dopaminergic neurons of the ventral midbrain. Biological Psychiatry, 57(4), 361–365. https://doi.org/10.1016/j.biopsych.2004.11.030
[13]. Jaeschke, R. R., Sujkowska, E., & Sowa-Kućma, M. (2021). Methylphenidate for attention-deficit/hyperactivity disorder in adults: a narrative review. Psychopharmacology, 238(10), 2667–2691. https://doi.org/10.1007/s00213-021-05946-0
[14]. Economidou, D., Theobald, D. E. H., Robbins, T. W., Everitt, B. J., & Dalley, J. W. (2012). Norepinephrine and dopamine modulate impulsivity on the Five-Choice serial reaction time task through opponent actions in the shell and core Sub-Regions of the nucleus accumbens. Neuropsychopharmacology, 37(9), 2057–2066. https://doi.org/10.1038/npp.2012.53
[15]. Chiara, C., Bernanda, P. M., Claudia, M., Elisa, D., Tony, M. M., Valentina, R., Sandro, G., Paolo, C., Paola, S., Augusto, P., & Emanuela, B. (2018). The Decrease in Human Endogenous Retrovirus-H Activity Runs in Parallel with Improvement in ADHD Symptoms in Patients Undergoing Methylphenidate Therapy. International Journal of Molecular Sciences, 19(11), 3286. https://doi.org/10.3390/ijms19113286
[16]. Steingard, R., Taskiran, S., Connor, D. F., Markowitz, J. S., & Stein, M. A. (2019). New formulations of stimulants: an update for clinicians. Journal of Child and Adolescent Psychopharmacology, 29(5), 324–339. https://doi.org/10.1089/cap.2019.0043
[17]. Ermer, J. C., Pennick, M., & Frick, G. (2016). Lisdexamfetamine dimesylate: prodrug delivery, amphetamine exposure and duration of efficacy. Clinical Drug Investigation, 36(5), 341–356. https://doi.org/10.1007/s40261-015-0354-y
[18]. Quintero, J., Gutiérrez-Casares, J. R., & Álamo, C. (2022). Molecular Characterisation of the mechanism of action of stimulant drugs lisdexamfetamine and methylphenidate on ADHD Neurobiology: a review. Neurology and Therapy, 11(4), 1489–1517. https://doi.org/10.1007/s40120-022-00392-2
[19]. Corona, J. C., Carreón-Trujillo, S., González-Pérez, R., Gómez-Bautista, D., Vázquez-González, D., & Salazar-García, M. (2019). Atomoxetine produces oxidative stress and alters mitochondrial function in human neuron-like cells. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49609-9
[20]. Logan, J., Wang, G., Telang, F., Fowler, J. S., Alexoff, D., Zabroski, J., Jayne, M., Hubbard, B., King, P., Carter, P., Shea, C., Xu, Y., Muench, L., Schlyer, D., Learned-Coughlin, S., Cosson, V., Volkow, N. D., & Ding, Y. (2007). Imaging the norepinephrine transporter in humans with (S,S)-[11C]O-methyl reboxetine and PET: problems and progress. Nuclear Medicine and Biology, 34(6), 667–679. https://doi.org/10.1016/j.nucmedbio.2007.03.013
[21]. Hussain, L. S., Reddy, V., & Maani, C. V. (2023, May 1). Physiology, noradrenergic synapse. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK540977/
[22]. Sugimoto, A., Suzuki, Y., Yoshinaga, K., Orime, N., Hayashi, T., Egawa, J., Ono, S., Sugai, T., & Someya, T. (2021). Influence of atomoxetine on relationship between ADHD symptoms and prefrontal cortex activity during task execution in adult patients. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.755025
[23]. Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews. Neuroscience, 10(6), 410–422. https://doi.org/10.1038/nrn2648
[24]. Atomoxetine: MedlinePlus drug information. (n.d.). https://medlineplus.gov/druginfo/meds/a603013.html
[25]. Clemow, D. B., Nyhuis, A. W., & Robinson, R. L. (2016). Clinical Impact of Not Achieving Recommended Dose on Duration of Atomoxetine Treatment in Adults with Attention‐Deficit/Hyperactivity Disorder. CNS Neuroscience & Therapeutics, 22(12), 970–978. https://doi.org/10.1111/cns.12595
[26]. Brown, J., Abdel‐Rahman, S., Van Haandel, L., Gaedigk, A., Lin, Y., & Leeder, J. (2015). Single dose, CYP2D6 genotype‐stratified pharmacokinetic study of atomoxetine in children with ADHD. Clinical Pharmacology & Therapeutics, 99(6), 642–650. https://doi.org/10.1002/cpt.319
[27]. Sauer, J., Ring, B. J., & Witcher, J. W. (2005). Clinical pharmacokinetics of atomoxetine. Clinical Pharmacokinetics, 44(6), 571–590. https://doi.org/10.2165/00003088-200544060-00002
[28]. Perugi, G., & Vannucchi, G. (2015). The use of stimulants and atomoxetine in adults with comorbid ADHD and bipolar disorder. Expert Opinion on Pharmacotherapy, 16(14), 2193–2204. https://doi.org/10.1517/14656566.2015.1079620
[29]. Quinn, D., Wigal, S., Swanson, J., Hirsch, S., Ottolini, Y., Dariani, M., Roffman, M., Zeldis, J., & Cooper, T. (n.d.). Comparative Pharmacodynamics and Plasma Concentrations of d-threo-Methylphenidate Hydrochloride After Single Doses of d-threo-Methylphenidate Hydrochloride and d,l-threo-Methylphenidate Hydrochloride in a Double-Blind, Placebo-Controlled, Crossover Laboratory School Study in Children With Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 43(11), 1422–1429. https://doi.org/10.1097/01.chi.0000140455.96946.2b
[30]. Quinn, D., Wigal, S., Swanson, J., Hirsch, S., Ottolini, Y., Dariani, M., Roffman, M., Zeldis, J., & Cooper, T. (n.d.). Comparative Pharmacodynamics and Plasma Concentrations of d-threo-Methylphenidate Hydrochloride After Single Doses of d-threo-Methylphenidate Hydrochloride and d,l-threo-Methylphenidate Hydrochloride in a Double-Blind, Placebo-Controlled, Crossover Laboratory School Study in Children With Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 43(11), 1422–1429. https://doi.org/10.1097/01.chi.0000140455.96946.2b
[31]. Liu, Q., Zhang, H., Fang, Q., & Qin, L. (2017). Comparative efficacy and safety of methylphenidate and atomoxetine for attention-deficit hyperactivity disorder in children and adolescents: Meta-analysis based on head-to-head trials. Journal of Clinical and Experimental Neuropsychology, 39(9), 854–865. https://doi.org/10.1080/13803395.2016.1273320
Cite this article
Lai,Y. (2025). Attention-Deficit/Hyperactivity Disorder Medication Use: Stimulant Medication and Non-stimulant Medication. Theoretical and Natural Science,116,96-105.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 3rd International Conference on Modern Medicine and Global Health
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Arnsten, A. F. (2009). ADHD and the prefrontal cortex. The Journal of Pediatrics, 154(5), I-S43. https://doi.org/10.1016/j.jpeds.2009.01.018
[2]. Polanczyk, G. V., Willcutt, E. G., Salum, G. A., Kieling, C., & Rohde, L. A. (2014). ADHD prevalence estimates across three decades: an updated systematic review and meta-regression analysis. International Journal of Epidemiology, 43(2), 434–442. https://doi.org/10.1093/ije/dyt261
[3]. Nazarova, V. A., Sokolov, A. V., Chubarev, V. N., Tarasov, V. V., & Schiöth, H. B. (2022). Treatment of ADHD: Drugs, psychological therapies, devices, complementary and alternative methods as well as the trends in clinical trials. Frontiers in Pharmacology, 13. https://doi.org/10.3389/fphar.2022.1066988
[4]. Team, E. W. (n.d.). methyl phenyl(piperidin-2-yl)acetate (CHEBI:84276). https://www.ebi.ac.uk/chebi/searchId.do?chebiId=84276
[5]. Team, E. W. (n.d.-a). dexmethylphenidate (CHEBI:51860). https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:51860
[6]. Blick, S. K. A., & Keating, G. M. (2007). Lisdexamfetamine. Pediatric Drugs, 9(2), 129–135. https://doi.org/10.2165/00148581-200709020-00007
[7]. Team, E. W. (n.d.). lisdexamfetamine (CHEBI:135925). https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:135925
[8]. Team, E. W. (n.d.-a). atomoxetine (CHEBI:127342). https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:127342
[9]. PubChem. (n.d.). Atomoxetine. PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/Atomoxetine
[10]. Dresel, S. H. J., Kung, M. T., Huang, X., Plössl, K., Hou, C., Shiue, C. Y., Karp, J., & Kung, H. F. (1999). In vivo imaging of serotonin transporters with [ 99m Tc]TRODAT-1 in nonhuman primates. European Journal of Nuclear Medicine and Molecular Imaging, 26(4), 342–347. https://doi.org/10.1007/s002590050396
[11]. Gamo, N. J., Wang, M., & Arnsten, A. F. (2010). Methylphenidate and atomoxetine enhance prefrontal function through Α2-Adrenergic and dopamine D1 receptors. Journal of the American Academy of Child & Adolescent Psychiatry, 49(10), 1011–1023. https://doi.org/10.1016/j.jaac.2010.06.015
[12]. Federici, M., Geracitano, R., Bernardi, G., & Mercuri, N. B. (2005). Actions of methylphenidate on dopaminergic neurons of the ventral midbrain. Biological Psychiatry, 57(4), 361–365. https://doi.org/10.1016/j.biopsych.2004.11.030
[13]. Jaeschke, R. R., Sujkowska, E., & Sowa-Kućma, M. (2021). Methylphenidate for attention-deficit/hyperactivity disorder in adults: a narrative review. Psychopharmacology, 238(10), 2667–2691. https://doi.org/10.1007/s00213-021-05946-0
[14]. Economidou, D., Theobald, D. E. H., Robbins, T. W., Everitt, B. J., & Dalley, J. W. (2012). Norepinephrine and dopamine modulate impulsivity on the Five-Choice serial reaction time task through opponent actions in the shell and core Sub-Regions of the nucleus accumbens. Neuropsychopharmacology, 37(9), 2057–2066. https://doi.org/10.1038/npp.2012.53
[15]. Chiara, C., Bernanda, P. M., Claudia, M., Elisa, D., Tony, M. M., Valentina, R., Sandro, G., Paolo, C., Paola, S., Augusto, P., & Emanuela, B. (2018). The Decrease in Human Endogenous Retrovirus-H Activity Runs in Parallel with Improvement in ADHD Symptoms in Patients Undergoing Methylphenidate Therapy. International Journal of Molecular Sciences, 19(11), 3286. https://doi.org/10.3390/ijms19113286
[16]. Steingard, R., Taskiran, S., Connor, D. F., Markowitz, J. S., & Stein, M. A. (2019). New formulations of stimulants: an update for clinicians. Journal of Child and Adolescent Psychopharmacology, 29(5), 324–339. https://doi.org/10.1089/cap.2019.0043
[17]. Ermer, J. C., Pennick, M., & Frick, G. (2016). Lisdexamfetamine dimesylate: prodrug delivery, amphetamine exposure and duration of efficacy. Clinical Drug Investigation, 36(5), 341–356. https://doi.org/10.1007/s40261-015-0354-y
[18]. Quintero, J., Gutiérrez-Casares, J. R., & Álamo, C. (2022). Molecular Characterisation of the mechanism of action of stimulant drugs lisdexamfetamine and methylphenidate on ADHD Neurobiology: a review. Neurology and Therapy, 11(4), 1489–1517. https://doi.org/10.1007/s40120-022-00392-2
[19]. Corona, J. C., Carreón-Trujillo, S., González-Pérez, R., Gómez-Bautista, D., Vázquez-González, D., & Salazar-García, M. (2019). Atomoxetine produces oxidative stress and alters mitochondrial function in human neuron-like cells. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49609-9
[20]. Logan, J., Wang, G., Telang, F., Fowler, J. S., Alexoff, D., Zabroski, J., Jayne, M., Hubbard, B., King, P., Carter, P., Shea, C., Xu, Y., Muench, L., Schlyer, D., Learned-Coughlin, S., Cosson, V., Volkow, N. D., & Ding, Y. (2007). Imaging the norepinephrine transporter in humans with (S,S)-[11C]O-methyl reboxetine and PET: problems and progress. Nuclear Medicine and Biology, 34(6), 667–679. https://doi.org/10.1016/j.nucmedbio.2007.03.013
[21]. Hussain, L. S., Reddy, V., & Maani, C. V. (2023, May 1). Physiology, noradrenergic synapse. StatPearls - NCBI Bookshelf. https://www.ncbi.nlm.nih.gov/books/NBK540977/
[22]. Sugimoto, A., Suzuki, Y., Yoshinaga, K., Orime, N., Hayashi, T., Egawa, J., Ono, S., Sugai, T., & Someya, T. (2021). Influence of atomoxetine on relationship between ADHD symptoms and prefrontal cortex activity during task execution in adult patients. Frontiers in Human Neuroscience, 15. https://doi.org/10.3389/fnhum.2021.755025
[23]. Arnsten, A. F. T. (2009). Stress signalling pathways that impair prefrontal cortex structure and function. Nature Reviews. Neuroscience, 10(6), 410–422. https://doi.org/10.1038/nrn2648
[24]. Atomoxetine: MedlinePlus drug information. (n.d.). https://medlineplus.gov/druginfo/meds/a603013.html
[25]. Clemow, D. B., Nyhuis, A. W., & Robinson, R. L. (2016). Clinical Impact of Not Achieving Recommended Dose on Duration of Atomoxetine Treatment in Adults with Attention‐Deficit/Hyperactivity Disorder. CNS Neuroscience & Therapeutics, 22(12), 970–978. https://doi.org/10.1111/cns.12595
[26]. Brown, J., Abdel‐Rahman, S., Van Haandel, L., Gaedigk, A., Lin, Y., & Leeder, J. (2015). Single dose, CYP2D6 genotype‐stratified pharmacokinetic study of atomoxetine in children with ADHD. Clinical Pharmacology & Therapeutics, 99(6), 642–650. https://doi.org/10.1002/cpt.319
[27]. Sauer, J., Ring, B. J., & Witcher, J. W. (2005). Clinical pharmacokinetics of atomoxetine. Clinical Pharmacokinetics, 44(6), 571–590. https://doi.org/10.2165/00003088-200544060-00002
[28]. Perugi, G., & Vannucchi, G. (2015). The use of stimulants and atomoxetine in adults with comorbid ADHD and bipolar disorder. Expert Opinion on Pharmacotherapy, 16(14), 2193–2204. https://doi.org/10.1517/14656566.2015.1079620
[29]. Quinn, D., Wigal, S., Swanson, J., Hirsch, S., Ottolini, Y., Dariani, M., Roffman, M., Zeldis, J., & Cooper, T. (n.d.). Comparative Pharmacodynamics and Plasma Concentrations of d-threo-Methylphenidate Hydrochloride After Single Doses of d-threo-Methylphenidate Hydrochloride and d,l-threo-Methylphenidate Hydrochloride in a Double-Blind, Placebo-Controlled, Crossover Laboratory School Study in Children With Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 43(11), 1422–1429. https://doi.org/10.1097/01.chi.0000140455.96946.2b
[30]. Quinn, D., Wigal, S., Swanson, J., Hirsch, S., Ottolini, Y., Dariani, M., Roffman, M., Zeldis, J., & Cooper, T. (n.d.). Comparative Pharmacodynamics and Plasma Concentrations of d-threo-Methylphenidate Hydrochloride After Single Doses of d-threo-Methylphenidate Hydrochloride and d,l-threo-Methylphenidate Hydrochloride in a Double-Blind, Placebo-Controlled, Crossover Laboratory School Study in Children With Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 43(11), 1422–1429. https://doi.org/10.1097/01.chi.0000140455.96946.2b
[31]. Liu, Q., Zhang, H., Fang, Q., & Qin, L. (2017). Comparative efficacy and safety of methylphenidate and atomoxetine for attention-deficit hyperactivity disorder in children and adolescents: Meta-analysis based on head-to-head trials. Journal of Clinical and Experimental Neuropsychology, 39(9), 854–865. https://doi.org/10.1080/13803395.2016.1273320