References
[1]. Reynolds, C. S. (2019). Observing black holes spin. Nature Astronomy, 3(1), 41-47.
[2]. Reynolds, C. S. (2013). Measuring black hole spin using X-ray reflection spectroscopy. In The Physics of Accretion onto Black Holes (pp. 277-294). Springer, New York, NY.
[3]. Penrose, R., & Floyd, R. M. (1971). Extraction of rotational energy from a black hole. Nature Physical Science,229(6), 177-179.
[4]. Blandford, R. D., & Znajek, R. L. (1977). Electromagnetic extraction of energy from Kerr black holes. Monthly Notices of the Royal Astronomical Society, 179(3), 433-456.
[5]. Wang, D. X., Ye, Y. C., Li, Y., & Ge, Z. J. (2008). The BZ–MC–BP model for jet production from a black hole accretion disc. Monthly Notices of the Royal Astronomical Society, 385(2), 841-848.
[6]. Pei, G., Nampalliwar, S., Bambi, C., & Middleton, M. J. (2016). Blandford–Znajek mechanism in black holes in alternative theories of gravity. The European Physical Journal C, 76(10), 1-12.
[7]. Blandford, R. D., & Payne, D. G. (1982). Hydromagnetic flows from accretion discs and the production of radio jets.Monthly Notices of the Royal Astronomical Society, 199(4), 883-903.
[8]. Fender, R., & Belloni, T. (2012). Stellar-mass black holes and ultraluminous X-ray sources. Science, 337(6094), 540-544.
[9]. McClintock, J. E., Narayan, R., & Steiner, J. F. (2013). Black hole spin via continuum fitting and the role of spin in powering transient jets. In The Physics of Accretion onto Black Holes (pp. 295-322). Springer, New York, NY
[10]. Fender, R. P., Gallo, E., & Russell, D. (2010). No evidence for black hole spin powering of jets in X-ray binaries. Monthly Notices of the Royal Astronomical Society, 406(3), 1425-1434.
[11]. Narayan, R., & McClintock, J. E. (2012). Observational evidence for a correlation between jet power and black hole spin. Monthly Notices of the Royal Astronomical Society: Letters, 419(1), L69-L73. (NM 2012)
[12]. Steiner, J. F., McClintock, J. E., & Narayan, R. (2012). Jet power and black hole spin: testing an empirical relationship and using it to predict the spins of six black holes. The Astrophysical Journal, 762(2), 104. (SMN 2013)
[13]. Chen, Z., Gou, L., McClintock, J. E., Steiner, J. F., Wu, J., Xu, W., & Xiang, Y. (2016). The spin of the black hole in the X-ray binary Nova Muscae 1991. The Astrophysical Journal, 825(1), 45.
[14]. Russell, D. M., Gallo, E., & Fender, R. P. (2013). Observational constraints on the powering mechanism of transient relativistic jets. Monthly Notices of the Royal Astronomical Society, 431(1), 405-414. (RGF 2013)
Cite this article
Zhang,Y. (2023). Stellar-mass black hole spinning and its relation to transient jets. Theoretical and Natural Science,5,418-422.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics (CONF-CIAP 2023)
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Reynolds, C. S. (2019). Observing black holes spin. Nature Astronomy, 3(1), 41-47.
[2]. Reynolds, C. S. (2013). Measuring black hole spin using X-ray reflection spectroscopy. In The Physics of Accretion onto Black Holes (pp. 277-294). Springer, New York, NY.
[3]. Penrose, R., & Floyd, R. M. (1971). Extraction of rotational energy from a black hole. Nature Physical Science,229(6), 177-179.
[4]. Blandford, R. D., & Znajek, R. L. (1977). Electromagnetic extraction of energy from Kerr black holes. Monthly Notices of the Royal Astronomical Society, 179(3), 433-456.
[5]. Wang, D. X., Ye, Y. C., Li, Y., & Ge, Z. J. (2008). The BZ–MC–BP model for jet production from a black hole accretion disc. Monthly Notices of the Royal Astronomical Society, 385(2), 841-848.
[6]. Pei, G., Nampalliwar, S., Bambi, C., & Middleton, M. J. (2016). Blandford–Znajek mechanism in black holes in alternative theories of gravity. The European Physical Journal C, 76(10), 1-12.
[7]. Blandford, R. D., & Payne, D. G. (1982). Hydromagnetic flows from accretion discs and the production of radio jets.Monthly Notices of the Royal Astronomical Society, 199(4), 883-903.
[8]. Fender, R., & Belloni, T. (2012). Stellar-mass black holes and ultraluminous X-ray sources. Science, 337(6094), 540-544.
[9]. McClintock, J. E., Narayan, R., & Steiner, J. F. (2013). Black hole spin via continuum fitting and the role of spin in powering transient jets. In The Physics of Accretion onto Black Holes (pp. 295-322). Springer, New York, NY
[10]. Fender, R. P., Gallo, E., & Russell, D. (2010). No evidence for black hole spin powering of jets in X-ray binaries. Monthly Notices of the Royal Astronomical Society, 406(3), 1425-1434.
[11]. Narayan, R., & McClintock, J. E. (2012). Observational evidence for a correlation between jet power and black hole spin. Monthly Notices of the Royal Astronomical Society: Letters, 419(1), L69-L73. (NM 2012)
[12]. Steiner, J. F., McClintock, J. E., & Narayan, R. (2012). Jet power and black hole spin: testing an empirical relationship and using it to predict the spins of six black holes. The Astrophysical Journal, 762(2), 104. (SMN 2013)
[13]. Chen, Z., Gou, L., McClintock, J. E., Steiner, J. F., Wu, J., Xu, W., & Xiang, Y. (2016). The spin of the black hole in the X-ray binary Nova Muscae 1991. The Astrophysical Journal, 825(1), 45.
[14]. Russell, D. M., Gallo, E., & Fender, R. P. (2013). Observational constraints on the powering mechanism of transient relativistic jets. Monthly Notices of the Royal Astronomical Society, 431(1), 405-414. (RGF 2013)