References
[1]. Le Gall, François (2014), "Algebraic complexity theory and matrix multiplication", in Ka-tsusuke Nabeshima (ed.), Proceedings of the 39th International Symposium on Symbo-lic and Algebraic Computation - ISSAC '14, pp. 296–303, arXiv:1401.7714, Bibcode:2-014arXiv1401.7714L, doi:10.1145/2608628.2627493, ISBN 978-1-4503-2501-1, S2CID 25-97483
[2]. Zhang, Y., & Yu, H. (2022). Faster Matrix Multiplication via Partitioned Computing. arXiv preprint arXiv:2210.10173. Retrieved from https://arxiv.org/pdf/2210.10173.pdf
[3]. V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354-356, 1969.
[4]. Steven Huss-Lederman, Elaine M. Jacobson, Anna Tsao, Thomas Turnbull, and Jeremy R. Johnson. 1996. Implementation of Strassen's algorithm for matrix multiplication. In Proceedings of the 1996 ACM/IEEE conference on Supercomputing (Supercomputing '96). IEEE Computer Society, USA, 32–es. https://doi.org/10.1145/369028.369096
[5]. Virginia Vassilevska Williams (2012). "Multiplying Matrices Faster than Coppersmith-Winograd". In Howard J. Karloff; Toniann Pitassi (eds.). Proc. 44th Symposium on Theory of Computing (STOC). ACM. pp. 887–898. doi:10.1145/2213977.2214056. S2CID 14350287.
[6]. Williams, Virginia Vassilevska. Multiplying matrices in O()time (PDF) (Technical Report). Stanford University.
[7]. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic Computation, 9(3):251–280, 1990.
[8]. D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multiplication. In Proc. SFCS, pages 82–90, 1981.
[9]. Hardesty, L. (n.d.). Explained: Matrices. MIT News | Massachusetts Institute of Technology. Retrieved April 25, 2023, from https://news.mit.edu/2013/explained-matrices-1206
[10]. Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022. doi:10.1038/s41586-022-05172-4
[11]. Benj Edwards - Oct 13, 2022 8:46 pm U. T. C., & Scintillant Seniorius Lurkius et Sub-scriptor jump to post. (2022, October 13). Deepmind breaks 50-year math record usi-ng AI; New record falls a week later. Ars Technica. Retrieved April 20, 2023, fromhttps://arstechnica.com/information-technology/2022/10/deepmind-breaks-50-year-math-record-using-ai-new-record-falls-a-week-later/
Cite this article
Liu,J. (2023). Analysis of faster matrix multiplication. Theoretical and Natural Science,11,142-146.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Le Gall, François (2014), "Algebraic complexity theory and matrix multiplication", in Ka-tsusuke Nabeshima (ed.), Proceedings of the 39th International Symposium on Symbo-lic and Algebraic Computation - ISSAC '14, pp. 296–303, arXiv:1401.7714, Bibcode:2-014arXiv1401.7714L, doi:10.1145/2608628.2627493, ISBN 978-1-4503-2501-1, S2CID 25-97483
[2]. Zhang, Y., & Yu, H. (2022). Faster Matrix Multiplication via Partitioned Computing. arXiv preprint arXiv:2210.10173. Retrieved from https://arxiv.org/pdf/2210.10173.pdf
[3]. V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354-356, 1969.
[4]. Steven Huss-Lederman, Elaine M. Jacobson, Anna Tsao, Thomas Turnbull, and Jeremy R. Johnson. 1996. Implementation of Strassen's algorithm for matrix multiplication. In Proceedings of the 1996 ACM/IEEE conference on Supercomputing (Supercomputing '96). IEEE Computer Society, USA, 32–es. https://doi.org/10.1145/369028.369096
[5]. Virginia Vassilevska Williams (2012). "Multiplying Matrices Faster than Coppersmith-Winograd". In Howard J. Karloff; Toniann Pitassi (eds.). Proc. 44th Symposium on Theory of Computing (STOC). ACM. pp. 887–898. doi:10.1145/2213977.2214056. S2CID 14350287.
[6]. Williams, Virginia Vassilevska. Multiplying matrices in O()time (PDF) (Technical Report). Stanford University.
[7]. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic Computation, 9(3):251–280, 1990.
[8]. D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix multiplication. In Proc. SFCS, pages 82–90, 1981.
[9]. Hardesty, L. (n.d.). Explained: Matrices. MIT News | Massachusetts Institute of Technology. Retrieved April 25, 2023, from https://news.mit.edu/2013/explained-matrices-1206
[10]. Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022. doi:10.1038/s41586-022-05172-4
[11]. Benj Edwards - Oct 13, 2022 8:46 pm U. T. C., & Scintillant Seniorius Lurkius et Sub-scriptor jump to post. (2022, October 13). Deepmind breaks 50-year math record usi-ng AI; New record falls a week later. Ars Technica. Retrieved April 20, 2023, fromhttps://arstechnica.com/information-technology/2022/10/deepmind-breaks-50-year-math-record-using-ai-new-record-falls-a-week-later/