Miyaoka-Yau type inequalities of complete intersection threefolds in products of projective

Research Article
Open access

Miyaoka-Yau type inequalities of complete intersection threefolds in products of projective

Mengxuan Zhang 1* , Mengyao Zhang 2
  • 1 Chongqing Depu Foreign Language School    
  • 2 Chongqing Depu Foreign Language School    
  • *corresponding author 1872479691@qq.com
Published on 30 November 2023 | https://doi.org/10.54254/2753-8818/14/20240867
TNS Vol.14
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-83558-191-9
ISBN (Online): 978-1-83558-192-6

Abstract

Geography of projective varieties is one of the fundamental problems in algebraic geometry. There are many researches toward the characteristics of Chern number of some projective spaces, for example Noether’s inequalities, the theorem of Chang-Lopez, and the Miyaoka-Yau inequality. In this paper, we compute the Chern numbers of any smooth complete intersection threefold in the product of projective spaces via the standard exact sequences of cotangent bundles. Then we obtain linear Chern number inequalities for (c_1 (X)c_2 (X))/(c_1^3 (X)) and (c_3 (X))/(c_1^3 (X)) on such threefolds under conditions of d_ij≥4 and d_ij≥6 respectively. They can be considered as a generalization of the Miyaoka-Yau inequality and an improvement of Yau’s inequality for such threefolds.

Keywords:

Chen class, Miyaoka-Yau Inequality, Threefold, Complete Intersection

Zhang,M.;Zhang,M. (2023). Miyaoka-Yau type inequalities of complete intersection threefolds in products of projective. Theoretical and Natural Science,14,8-17.
Export citation

1. Introduction

One of the fundamental problems in algebraic geometry is to study the geography of projective varieties, i.e., determining which Chern numbers occur for a complex smooth projective variety M. When M is a minimal surface of general type, we have Noether’s inequalities [1]:

\( {p_{g}}(M)={h^{0}}(M,{ω_{M}}) \)

\( K_{M}^{2}≥2{p_{g}}(M)-4. \)

This implies

\( 5c_{1}^{2}(M)≥{c_{2}}(M)-36. \)

While on the other hand, we have the Miyaoka-Yau inequality:

\( c_{1}^{2}(M)≤3{c_{2}}(M). \)

Hence \( \frac{{c_{2}}(M)}{c_{1}^{2}(M)} \) is bounded. When M is a threefold of general type with ample canonical divisor, Yau’s famous inequality in [2] says

\( 8{c_{1}}(M){c_{2}}(M)≤3c_{1}^{3}(M). \)

Hunt studied the geography of threefolds in [3]. Later, Chang and Lopez proved in [4] that the region described by the Chern ratios \( (\frac{c_{1}^{3}(M)}{{c_{1}}(M){c_{2}}(M)},\frac{{c_{3}}(M)}{{c_{1}}(M){c_{2}}(M)}) \) of threefolds with ample canonical divisor is bounded. Sheng, Xu and Zhang gave the inequalities of Chern numbers of complete intersection threefolds with ample canonical divisor in [5]:

\( 86c_{1}^{3}(M)≤{c_{3}}(M)≤\frac{c_{1}^{3}(M)}{6}. \)

The theorem of Chang-Lopez has been generalized to higher dimensional case by Du and Sun in [6].

Theorem 1.1. Let X be a nonsingular projective variety of dimension n over an algebraic closed field κ with any characteristic. Suppose KX or −KX is ample. If the characteristic of κ is 0 or the characteristic of κ is positive and OX(KX)(OX(−KX), respectively) is globally generated, then

\( (\frac{{c_{2,{1^{n-2}}}}}{c_{1}^{n}},\frac{{c_{2,2,{1^{n-4}}}}}{c_{1}^{n}},⋯,\frac{{c_{n}}}{c_{1}^{n}})∈{A^{p(n)}} \)

is contained in a convex polyhedron in Ap(n) depending on the dimension of X only, where p(n) is the partition number and the elements in the parentheses arranged from small to big in terms of the alphabet order of the lower indices of the numerators.

In this paper, we study the inequalities of Chern numbers of complete intersection threefolds in products of \( {P^{1}} \) . Throughout this paper, we always let \( {π_{i}}:\underset{n+3copies}{\underbrace{{P^{1}}×{P^{1}}×⋯×{P^{1}}}}\overset{}{→}{P^{1}} \) be the i-th projection, and \( {Q_{i}}=π_{i}^{*}(P) \) , where \( P \) is a point of \( {P^{1}} \) . Take Hi be a general divisor in the linear system \( |\sum _{t=1}^{n+3} {d_{it}}{Q_{t}}| \) , where dit is a positive integer for 1 ≤ i ≤ n,1 ≤ t ≤ n+3. By the Bertini theorem, one can assume that Hi is a smooth hypersurface for i = 1, 2, ···, n, and \( X={H_{1}}∩{H_{2}}∩⋯∩{H_{n}} \) is a smooth threefold.

Our main result is

Theorem1.2. If \( {d_{ij}}≥4 \) for any \( 1≤i≤n,1≤j≤n+3, \) then we have \( \frac{1}{2} \lt \frac{{c_{1}}(X){c_{2}}(X)}{c_{1}^{3}(X)} \lt \frac{2}{(4n-2{)^{2}}}+\frac{2}{4n-2}+1 \) . If \( {d_{ij}}≥6 \) for any \( 1≤i≤n,1≤j≤n+3 \) , then \( \frac{{c_{1}}(\bar{X}){c_{2}}(X)}{c_{1}^{3}(X)}-\frac{1}{2} \lt \frac{{c_{3}}(X)}{c_{1}^{3}(X)} \lt \frac{7}{12}. \)

In Section 2, In section 2, we recall the basic definitions and properties of Chern classes. In section 3, we will compute the Chern numbers of X. In section 4, we study the upper and lower bounds of \( \frac{{c_{3}}(X)}{c_{1}^{3}(X)}and\frac{{c_{1}}(X){c_{2}}(X)}{c_{1}^{3}(X)} \) .

2. Chern classes

In this section, we introduce the definition of Chern classes.

Let M be a smooth projective variety of dimension n. Let \( A(M)=⊕_{i=1}^{n}{A^{i}}(M) \) be the Chow ring of M. E is a vector bundle on M of rank r. The Chern class \( {c_{i}}(E) \) is a cycle in \( {A^{i}}(M) \) , here c0(E) = 1. We let \( {c_{t}}(E)=1+{c_{1}}(E)t+⋯+{c_{r}}(E){t^{r}} \) be the Chern polynomial of E.

Chern class ci(E) satisfies the properties below:

(1) If D is a divisor on M and \( E≅{O_{M}}(D) \) is a line bundle, then c1(E)=D.

(2) If f : M′ → M is a morphism of projective varieties, then ci(f∗E) = f∗ci(E).

(3) If 0 → E′ → E → E′′ → 0 is a short exact sequence of a vector bundle, then

\( \begin{array}{c} {c_{t}}(E)={c_{t}}({E^{ \prime }})\cdot {c_{t}}({E^{″}}) \\ =(1+{c_{1}}({E^{ \prime }})t+⋯+{c_{{r^{ \prime }}}}({E^{ \prime }}){t^{{r^{ \prime }}}})(1+{c_{1}}({E^{″}})t+⋯+{c_{{r^{ \prime \prime }}}}({E^{″}}){t^{{r^{ \prime \prime }}}}) \\ ={c_{{r^{ \prime }}}}({E^{ \prime }})\cdot {c_{{r^{ \prime \prime }}}}({E^{ \prime \prime }}){t^{{r^{ \prime }}+{r^{ \prime \prime }}}}+⋯. \end{array} \)

Assume that rank \( {E^{ \prime }}={r^{ \prime }} \) , rank \( {E^{ \prime \prime }}={r^{ \prime \prime }} \) , so that rank E = r′ + r′′. As a result, we have \( {c_{{r^{ \prime }}+{r^{ \prime \prime }}}}(E)={c_{{r^{ \prime }}}}({E^{ \prime }}){c_{{r^{ \prime \prime }}}}({E^{ \prime \prime }}). \)

(4) Let s be a global section of E. Assume that the zero set Z(s) of s satisfies that dim Z(s) =dimM − r, then \( {c_{r}}(E)=Z(s)∈{A^{r}}(M). \)

We call \( {c_{i}}(M)={c_{i}}({T_{M}}) \) the i-th Chern class of M.

3. Chern numbers of complete intersection three- folds in products of projective spaces

In this section, we compute the Chern numbers of X.

\( M=\underset{n+3}{\underbrace{{P^{1}}×{P^{1}}×⋯×{P^{1}}}} \)

then one sees

\( \begin{array}{c} {c_{t}}(M)={c_{t}}({T_{M}})={c_{t}}(π_{1}^{*}{T_{{P^{1}}}}⊕⋯⊕π_{n+3}^{*}{T_{{P^{1}}}}) \\ =(1+2{Q_{1}}t)(1+2{Q_{2}}t)⋯(1+2{Q_{n+3}}t). \end{array} \)

From the standard exact sequence

\( 0⟶{O_{{H_{1}}}}(-{H_{1}})⟶{Ω_{M}}{|_{{H_{1}}}}⟶{Ω_{{H_{1}}}}⟶0, \)

after taking duality, we have

\( 0⟶{T_{{H_{1}}}}⟶{T_{M}}{|_{{H_{1}}}}⟶{O_{{H_{1}}}}({H_{1}})⟶0. \)

Hence, we have

\( \begin{array}{c} {c_{t}}({H_{1}})=\frac{{c_{t}}({T_{M}}{|_{{H_{1}}}})}{{c_{t}}({O_{{H_{1}}}}({H_{1}}))} \\ =\frac{(1+2{Q_{1}}t)(1+2{Q_{2}}t)⋯(1+2{Q_{n+3}}t){|_{{H_{1}}}}}{(1+{H_{1}}t){|_{{H_{1}}}}}. \end{array} \)

From the exact sequence

\( 0⟶{T_{{H_{1}}∩{H_{2}}}}⟶{T_{{H_{1}}}}{|_{{H_{1}}}}∩{H_{2}}⟶{O_{{H_{1}}∩{H_{2}}}}({H_{2}})⟶0, \)

We obtain

\( {c_{t}}({H_{1}}∩{H_{2}})=\frac{(1+2{Q_{1}}t)⋯(1+2{Q_{n+3}}t){|_{{H_{1}}∩{H_{2}}}}}{(1+{H_{1}}t)(1+{H_{2}}t){|_{{H_{1}}∩{H_{2}}}}} \)

By repeating the procedure above, it can be obtained that

\( {c_{t}}(X)={c_{t}}({H_{1}}∩⋯∩{H_{n}})=\frac{(1+2{Q_{1}}t)(1+2{Q_{2}}t)⋯(1+2{Q_{n+3}}t){|_{X}}}{(1+{H_{1}}t)(1+{H_{2}}t)⋯(1+{H_{n}}t){|_{X}}} \)

It follows that

\( \begin{array}{c} (1+{c_{1}}(X)t+{c_{2}}(X){t^{2}}+{c_{3}}(X){t^{3}})(1+{H_{1}}t)(1+{H_{2}}t)⋯(1+{H_{n}}t){|_{X}} \\ =(1+2{Q_{1}}t)(1+2{Q_{2}}t)⋯(1+2{Q_{n+3}}t){|_{X}}. \end{array} \)

By considering the coefficient of t, we can get

\( \begin{array}{c} {c_{1}}(X)+{H_{1}}{|_{X}}+{H_{2}}{|_{X}}+⋯+{H_{n}}{|_{X}} \\ =2{Q_{1}}{|_{X}}+2{Q_{2}}{|_{X}}+⋯+2{Q_{n+3}}{|_{X}}. \end{array} \)

Thus,

\( \begin{array}{c} {c_{1}}(X)=(2{Q_{1}}+2{Q_{2}}+⋯+2{Q_{n+3}}-{H_{1}}-{H_{2}}-⋯-{H_{n}}){|_{X}} \\ =\sum _{i=1}^{n+3} (2-{d_{1i}}-{d_{2i}}-⋯-{d_{ni}}){Q_{i}}{|_{X}}. \end{array} \ \ \ (1) \)

As for the coefficient of t2, we see that

\( \begin{array}{c} {c_{2}}(X)+{c_{1}}(X)({H_{1}}+{H_{2}}+⋯+{H_{n}}){|_{X}}+\sum _{1≤i \lt j≤n} {H_{i}}{H_{j}}{|_{X}} \\ =4\sum _{1≤i \lt j≤n+3} {Q_{i}}{Q_{j}}{|_{X}}. \end{array} \)

Since

\( \begin{array}{c} {H_{1}}+{H_{2}}+⋯+{H_{n}} \\ =\sum _{i=1}^{n} {d_{i1}}{Q_{1}}+\sum _{i=1}^{n} {d_{i2}}{Q_{2}}+⋯+\sum _{i=1}^{n} {d_{i,n+3}}{Q_{n+3}}, \end{array} \)

We obtain

\( \begin{array}{c} {c_{1}}(X)({H_{1}}+{H_{2}}+⋯+{H_{n}}) \\ =\sum _{1≤i,j≤n+3} (2-{d_{1i}}-{d_{2i}}-⋯-{d_{ni}})\sum _{k=1}^{n} {d_{kj}}{Q_{i}}{Q_{j}}. \end{array} \)

Simple computations show that

\( \begin{array}{c} {H_{i}}{H_{j}}=({d_{i1}}{Q_{1}}+{d_{i2}}{Q_{2}}+⋯+{d_{i,n+3}}{Q_{n+3}})({d_{j1}}{Q_{1}}+{d_{j2}}{Q_{2}}+⋯+{d_{j,n+3}}{Q_{n+3}}) \\ =\sum _{1≤k,l≤n+3} {d_{ik}}{d_{jl}}{Q_{k}}{Q_{l}} \end{array} \)

Hence, we have

\( \begin{array}{c} {c_{2}}(X)=4\sum _{1≤i \lt j≤n+3} {Q_{i}}{Q_{j}}{|_{X}}-\sum _{1≤k,l≤n+3} {d_{ik}}{d_{jl}}{Q_{k}}{Q_{l}}{|_{X}}- \\ \sum _{1≤i,j≤n+3} (2-{d_{1i}}-{d_{2i}}{|_{X}}-⋯-{d_{ni}})\sum _{k=1}^{n} {d_{kj}}{Q_{i}}{Q_{j}}{|_{X}}. \end{array} \ \ \ (2) \)

Now considering the coefficient of t3, we get

\( \begin{array}{c} {c_{3}}(X)+{c_{2}}(X)\sum _{i=1}^{n} {H_{i|}}X+{c_{1}}(X)\sum _{1≤i \lt j≤n} {H_{i}}{H_{j}}{|_{X}}+ \\ \sum _{1≤i \lt j \lt k≤n} {H_{i}}{H_{j}}{H_{k}}{|_{X}}=8(\sum _{1≤i \lt j \lt k≤n+3} {Q_{i}}{Q_{j}}{Q_{k}}){|_{X}}. \end{array} \)

This implies

\( \begin{array}{c} {c_{3}}(X)=\sum _{{i_{1}},⋯,{i_{n}},i,j,k} {d_{1{i_{1}}}}⋯{d_{n{i_{n}}}}(\frac{4}{3}-\frac{1}{6}\sum _{1≤r,s,t≤n,(r-s)(s-t)(t-r)≠0} {d_{ri}}{d_{sj}}{d_{tk}} \\ -\frac{1}{2}(2-\sum _{i=1}^{n} {d_{ti}})\sum _{1≤s,t≤n,s≠t} {d_{tj}}{d_{sk}}-[2-\frac{1}{2}\sum _{1≤s,t≤n,s≠t} {d_{ti}}{d_{sj}}- \\ (2-\sum _{t=1}^{n} {d_{ti}})\sum _{t=1}^{n} {d_{tj}}]\sum _{t=1}^{n} {d_{tk}}) \end{array} \ \ \ (3) \)

where \( {i_{1}},⋯,{i_{n}},i,j,k \) take all the arrangements of \( 1,2,⋯,n+3. \)

By (1), (2), (3), we can have

\( c_{1}^{3}(X)=\sum _{{i_{1}},⋯,{i_{n}},i,j,k} {d_{1{i_{1}}}}⋯{d_{n{i_{n}}}}(2-\sum _{t=1}^{n} {d_{ti}})(2-\sum _{t=1}^{n} {d_{tij}})(2-\sum _{t=1}^{n} {d_{tk}}),\ \ \ (4) \)

\( \begin{array}{c} {c_{1}}(X){c_{2}}(X)=\sum _{{i_{1}},⋯,{i_{n}},i,j,k} {d_{1{i_{1}}}}⋯{d_{n{i_{n}}}}[2-\frac{1}{2}\sum _{1≤t,s≤n,t≠s} {d_{ti}}{d_{sj}} \\ -(2-\sum _{t=1}^{n} {d_{ti}})\sum _{t=1}^{n} {d_{tj}}](2-\sum _{t=1}^{n} {d_{tk}}) \end{array} \ \ \ (5) \)

4. Inequalities of Chern numbers

In this section, we estimate the upper and lower bounds for \( \frac{{c_{1}}(X){c_{2}}(X)}{c_{1}^{3}(X)} \) and \( \frac{{c_{3}}(X)}{c_{1}^{3}(X)} \) respectively. Let

\( {A_{i}}=(\sum _{t=1}^{n} {d_{ti}})-2,\ \ \ (6) \)

\( \begin{matrix}{B_{ij}} & = & \sum _{1≤s,t≤n,s≠t} {d_{ti}}{d_{sj}}, \\ \end{matrix}\ \ \ (7) \)

\( {C_{ijk}}=\sum _{1≤r,s,t≤n,(r-s)(s-t)(t-r)≠0}{d_{ri}}{d_{sj}}{d_{tk}},\ \ \ (8) \)

We have

\( \begin{array}{c} -c_{1}^{3}(X)=\sum _{{i_{1}},⋯,{i_{n}},i,j,k} {d_{1{i_{1}}}}⋯{d_{n{i_{n}}}}{A_{i}}{A_{j}}{A_{k}}, \\ -{c_{1}}(X){c_{2}}(X)=\sum _{{i_{1}},⋯,{i_{n}},i,j,k} {d_{1{i_{1}}}}⋯{d_{n{i_{n}}}}(2-\frac{1}{2}{B_{ij}}+{A_{i}}({A_{j}}+2)){A_{k}}, \\ -{c_{3}}(X)=\sum _{{i_{1}},⋯,{i_{n}},i,j,k} {d_{1{i_{1}}}}⋯{d_{n{i_{n}}}}[2-\frac{1}{2}{B_{ij}}+{A_{i}}({A_{j}}+2)]({A_{k}}+2) \\ -\frac{1}{2}{A_{i}}{B_{jk}}+\frac{1}{6}{C_{ijk}}-\frac{4}{3}. \end{array} \ \ \ (9) \)

4.1. Inequalities of \( \frac{{c_{1}}(X){c_{2}}(X)}{c_{1}^{3}(X)} \)

In order to estimate \( \frac{{c_{1}}(X){c_{2}}(X)}{c_{1}^{3}(X)} \) , we need to estimate

\( \frac{{d_{1{i_{1}}}}⋯{d_{n{i_{n}}}}(2-\frac{1}{2}{B_{ij}}+{A_{i}}({A_{j}}+2)){A_{k}}}{{d_{1{i_{1}}}}⋯{d_{n{i_{n}}}}{A_{i}}{A_{j}}{A_{k}}}=\frac{2-\frac{1}{2}{B_{ij}}+{A_{i}}({A_{j}}+2)}{{A_{i}}{A_{j}}} \)

for any \( 1≤i,j≤n+3 \) and \( i≠j. \)

Lemma 1. \( {If d_{ij}}≥4 for 1≤i≤n,1≤j≤n+3,{B_{ij}} \lt {A_{i}}{A_{j}}. \)

Proof. If \( {d_{ij}}≥4 \) , we have

\( \begin{array}{c} \sum _{t=1}^{n} {d_{ti}}\sum _{t=1}^{n} {d_{ij}}-2\sum _{t=1}^{n} {d_{ti}}-2\sum _{t=1}^{n} {d_{ij}}+4 \\ =\frac{1}{2}\sum _{t=1}^{n} {d_{ti}}{d_{tj}}-2\sum _{t=1}^{n} {d_{ti}}+\frac{1}{2}\sum _{t=1}^{n} {d_{ti}}{d_{tj}}-2\sum _{t=1}^{n} {d_{ij}}+4 \\ =\sum _{t=1}^{n} (\frac{1}{2}{d_{tj}}-2){d_{ti}}+\sum _{t=1}^{n} (\frac{1}{2}{d_{ti}}-2){d_{tj}}+4≥4. \end{array} \)

Since

\( \begin{array}{c} {A_{i}}{A_{j}}=(\sum _{t=1}^{n} {d_{ti}}-2)(\sum _{t=1}^{n} {d_{ij}}-2) \\ =\sum _{t=1}^{n} {d_{ti}}\sum _{t=1}^{n} {d_{ij}}-2\sum _{t=1}^{n} {d_{ti}}-2\sum _{t=1}^{n} {d_{ij}}+4 \\ ={B_{ij}}+\sum _{t=1}^{n} {d_{ti}}{d_{tj}}-2({A_{i}}+2)-2({A_{j}}+2)+4 \\ ={B_{ij}}-2{A_{i}}-2{A_{j}}-4+\sum _{t=1}^{n} {d_{ti}}{d_{tj}} \end{array} \)

One sees that

\( {A_{i}}{A_{j}}≥{B_{ij}}+4 \gt {B_{ij}}. \)

Lemma 2. When \( {d_{ij}}≥4 for 1≤i≤n,1≤j≤n+3 \) , then we have \( \frac{1}{2} \lt \frac{2-\frac{1}{2}{B_{ij}}+{A_{i}}({A_{j}}+2)}{{A_{i}}{A_{j}}} \lt \frac{2}{(4n-2{)^{2}}}+\frac{2}{4n-2}+1 \) .

Proof. As \( {d_{ij}}≥4, \) one sees \( {A_{j}}≥4n-2 \) , which means \( \frac{1}{{A_{j}}}≤\frac{1}{4n-2} \) . We can also have \( \frac{1}{{A_{i}}} \gt 0 \) . By Lemma 1, we have

\( \frac{2-\frac{1}{2}{B_{ij}}+{A_{i}}({A_{j}}+2)}{{A_{i}}{A_{j}}}=\frac{2}{{A_{i}}{A_{j}}}-\frac{\frac{1}{2}{B_{ij}}}{{A_{i}}{A_{j}}}+\frac{2}{{A_{j}}}+1 \gt 1-\frac{1}{2}=\frac{1}{2} \)

On the other hand, we have

\( \frac{2}{{A_{i}}{A_{j}}}-\frac{\frac{1}{2}{B_{ij}}}{{A_{i}}{A_{j}}}+\frac{2}{{A_{j}}}+1 \lt \frac{2}{{A_{i}}{A_{j}}}+\frac{2}{{A_{j}}}+1 \lt \frac{2}{(4n-2{)^{2}}}+\frac{2}{4n-2}+1\ \ \ (10) \)

Theorem 4.1. If \( {d_{ij}}≥4 for any 1≤i, j ≤n+3, \) then we have \( \frac{1}{2} \lt \) \( \frac{{c_{1}}(X){c_{2}}(X)}{c_{1}^{3}(X)} \lt \frac{2}{(4n-2{)^{2}}}+\frac{2}{4n-2}+1. \)

Proof. The desired conclusion follows from Lemma 2.

4.2. Inequalities of \( \frac{{c_{3}}(X)}{c_{1}^{3}(X)} \)

In order to estimate the range of \( \frac{{c_{3}}(X)}{c_{1}^{3}(X)} \) , we need to estimate the range of

\( \frac{(2-\frac{1}{2}{B_{ij}}+{A_{i}}{A_{j}}+2{A_{i}})({A_{k}}+2)-\frac{1}{2}{A_{i}}{B_{jk}}+\frac{1}{6}{C_{ijk}}-\frac{4}{3}}{{A_{i}}{A_{j}}{A_{k}}} \)

Lemma 3. \( {If d_{ij}}≥6 for any i, j, then we have {A_{i}}{A_{j}}{A_{k}} \gt {C_{ijk}}. \)

Proof. One sees that

\( \begin{array}{c} {A_{i}}{A_{j}}{A_{k}}=(\sum _{t=1}^{n} {d_{ti}}-2)(\sum _{t=1}^{n} {d_{tj}}-2)(\sum _{t=1}^{n} {d_{tk}}-2) \\ =\sum _{t=1}^{n} {d_{ti}}\sum _{t=1}^{n} {d_{tj}}\sum _{t=1}^{n} {d_{tk}}-2\sum _{t=1}^{n} {d_{ti}}\sum _{t=1}^{n} {d_{tj}}-2\sum _{t=1}^{n} {d_{tj}}\sum _{t=1}^{n} {d_{tk}} \\ -2\sum _{t=1}^{n} {d_{ti}}\sum _{t=1}^{n} {d_{tk}}+4\sum _{t=1}^{n} ({d_{ti}}+{d_{tj}}+{d_{tk}})-8, \end{array} \)

and

\( \begin{array}{c} \sum _{t=1}^{n} {d_{ti}}\sum _{t=1}^{n} {d_{tj}}\sum _{t=1}^{n} {d_{tk}} \\ =\sum _{1≤r,s,t≤n} {d_{ri}}{d_{sj}}{d_{tk}} \\ ={C_{ijk}}+\sum _{1≤r≠t≤n} {d_{ri}}{d_{rj}}{d_{tk}}+\sum _{1≤r≠t≤n} {d_{ri}}{d_{tj}}{d_{tk}} \\ +\sum _{1≤r≠s≤n} {d_{ri}}{d_{sj}}{d_{rk}}+\sum _{t=1}^{n} {d_{ti}}{d_{tj}}{d_{tk}}. \end{array} \)

We can further have that

\( \begin{array}{c} {A_{i}}{A_{j}}{A_{k}} \\ ={C_{ijk}}+\sum _{1≤r≠t≤n} {d_{ri}}{d_{rj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{tj}}\sum _{t=1}^{n} {d_{tk}} \\ +\sum _{1≤r≠t≤n} {d_{ri}}{d_{tj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{ti}}\sum _{t=1}^{n} {d_{tk}} \\ +\sum _{1≤r≠s≤n} {d_{ri}}{d_{sj}}{d_{rk}}-2\sum _{t=1}^{n} {d_{ti}}\sum _{t=1}^{n} {d_{tj}}+\sum _{t=1}^{n} {d_{ti}}{d_{tj}}{d_{tk}}. \end{array} \)

In order to see the relationship between \( {A_{i}}{A_{j}}{A_{k}} \) and \( {C_{ijk}} \) , we need to cal- culate the value of

\( \begin{array}{c} \sum _{1≤r≠t≤n} {d_{ri}}{d_{rj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{tj}}\sum _{t=1}^{n} {d_{tk}}+\sum _{1≤r≠t≤n} {d_{ri}}{d_{tj}}{d_{tk}} \\ -2\sum _{t=1}^{n} {d_{ti}}\sum _{t=1}^{n} {d_{tk}}+\sum _{1≤r≠s≤n} {d_{ri}}{d_{sj}}{d_{rk}}-2\sum _{t=1}^{n} {d_{ti}}\sum _{t=1}^{n} {d_{tj}}. \end{array} \)

One sees that

\( \begin{array}{c} \sum _{1≤r≠t≤n} {d_{ri}}{d_{rj}}{d_{tk}}-2∑{d_{tj}}∑{d_{tk}} \\ =\sum _{1≤r≠t≤n} {d_{ri}}{d_{rj}}{d_{tk}}-2\sum _{1≤r,t≤n} {d_{rj}}{d_{tk}} \\ =\sum _{1≤r≠t≤n} {d_{ri}}{d_{rj}}{d_{tk}}-2\sum _{1≤r≠t≤n} {d_{rj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{tj}}{d_{tk}} \\ =\sum _{1≤r≠t≤n} ({d_{ri}}-2){d_{rj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{tj}}{d_{tk}} \gt -2\sum _{t=1}^{n} {d_{tj}}{d_{tk}}. \end{array} \)

Similarly, we can obtain that

\( \sum _{1≤r≠t≤n} {d_{ri}}{d_{tj}}{d_{tk}}-2∑{d_{ti}}∑{d_{tk}} \gt -2\sum _{t=1}^{n} {d_{ti}}{d_{tk}} \)

and

\( \sum _{1≤r≠s≤n} {d_{ri}}{d_{sj}}{d_{rk}}-2∑{d_{ti}}∑{d_{tj}} \gt -2\sum _{t=1}^{n} {d_{ti}}{d_{tj}}. \)

By (20), (21) and (22), we can have that

\( {A_{i}}{A_{j}}{A_{k}} \gt {C_{ijk}}-2\sum _{t=1}^{n} {d_{tj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{ti}}{d_{tk}}-2\sum _{t=1}^{n} {d_{ti}}{d_{tj}}+\sum _{t=1}^{n} {d_{ti}}{d_{tj}}{d_{tk}}+4\sum _{t=1}^{n} ({d_{ti}}+{d_{tj}}+{d_{tk}})-8 \)

One sees that

\( \begin{array}{c} \sum _{t=1}^{n} {d_{ti}}{d_{tj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{tj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{ti}}{d_{tk}}-2\sum _{t=1}^{n} {d_{ti}}{d_{tj}} \\ =(\frac{1}{3}\sum _{t=1}^{n} {d_{ti}}{d_{tj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{tj}}{d_{tk}})+(\frac{1}{3}\sum _{t=1}^{n} {d_{ti}}{d_{tj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{ti}}{d_{tk}}) \\ +(\frac{1}{3}\sum _{t=1}^{n} {d_{ti}}{d_{tj}}{d_{tk}}-2\sum _{t=1}^{n} {d_{ti}}{d_{tj}}) \\ =\sum _{t=1}^{n} (\frac{1}{3}{d_{ti}}-2){d_{tj}}{d_{tk}}+\sum _{t=1}^{n} (\frac{1}{3}{d_{tj}}-2){d_{ti}}{d_{tk}}+\sum _{t=1}^{n} (\frac{1}{3}{d_{tk}}-2){d_{ti}}{d_{tj}}. \end{array} \)

If \( {d_{ij}}≥6 \) , then we can have that

\( \sum _{t=1}^{n} (\frac{1}{3}{d_{ti}}-2){d_{tj}}{d_{tk}}+\sum _{t=1}^{n} (\frac{1}{3}{d_{tj}}-2){d_{ti}}{d_{tk}}+\sum _{t=1}^{n} (\frac{1}{3}{d_{tk}}-2){d_{ti}}{d_{tj}}≥0. \)

This implies that

\( {A_{i}}{A_{j}}{A_{k}} \gt {C_{ijk}}. \)

As a result, we have

\( 0 \lt \frac{{C_{ijk}}}{{A_{i}}{A_{j}}{A_{k}}} \lt 1. \)

Lemma 4. If \( {d_{ij}}≥6 \) for any i, j, then we have

\( \frac{\frac{8}{3}-\frac{1}{2}{B_{ij}}+{A_{i}}{A_{j}}+2{A_{i}}-\frac{1}{2}{A_{i}}{B_{jk}}+\frac{1}{6}{C_{ijk}}}{{A_{i}}{A_{j}}{A_{k}}} \gt \frac{\frac{1}{2}{B_{jk}}}{{A_{j}}{A_{k}}}-\frac{1}{2}. \)

Proof. One sees that

\( \begin{array}{c} \frac{\frac{8}{3}-\frac{1}{2}{B_{ij}}+{A_{i}}{A_{j}}+2{A_{i}}-\frac{1}{2}{A_{i}}{B_{jk}}+\frac{1}{6}{C_{ijk}}}{{A_{i}}{A_{j}}{A_{k}}} \\ =\frac{\frac{8}{3}-\frac{1}{2}{B_{ij}}+{A_{i}}{A_{j}}+2{A_{i}}+\frac{1}{6}{C_{ijk}}}{{A_{i}}{A_{j}}{A_{k}}}-\frac{\frac{1}{2}{B_{jk}}}{{A_{j}}{A_{k}}}. \end{array} \)

By Lemma 1, we have

\( {B_{ij}} \lt {A_{i}}{A_{j}},{B_{jk}} \lt {A_{j}}{A_{k}}. \)

Hence, we have

\( \begin{array}{c} \frac{\frac{8}{3}-\frac{1}{2}{B_{ij}}+{A_{i}}{A_{j}}+2{A_{i}}-\frac{1}{2}{A_{i}}{B_{jk}}+\frac{1}{6}{C_{ijk}}}{{A_{i}}{A_{j}}{A_{k}}} \gt \\ \frac{\frac{8}{3}+\frac{1}{2}{B_{ij}}+2{A_{i}}-\frac{1}{2}{A_{i}}{B_{jk}}+\frac{1}{6}{C_{ijk}}}{{A_{i}}{A_{j}}{A_{k}}} \gt 0. \end{array} \)

This implies

\( \frac{\frac{8}{3}-\frac{1}{2}{B_{ij}}+{A_{i}}{A_{j}}+2{A_{i}}-\frac{1}{2}{A_{i}}{B_{jk}}+\frac{1}{6}{C_{ijk}}}{{A_{i}}{A_{j}}{A_{k}}} \gt \frac{\frac{1}{2}{B_{jk}}}{{A_{j}}{A_{k}}}-\frac{1}{2}.\ \ \ (11) \)

Theorem 4.2. If \( {d_{ij}}≥6 \) for any i, j, then we have \( \frac{{c_{1}}(X){c_{2}}(X)}{c_{1}^{3}(X)}-\frac{1}{2} \lt \frac{{c_{3}}(X)}{c_{1}^{3}(X)} \lt \frac{7}{12}. \)

Proof. According to Lemma 4, we have that \( -{c_{3}}(X) \gt -{c_{1}}(X){c_{2}}(X)-\frac{1}{2}c_{1}^{3}(X) \) , i.e., \( \frac{{c_{3}}(X)}{c_{1}^{3}(X)} \gt \frac{{c_{1}}(X){c_{2}}(X)}{c_{1}^{3}(X)}-\frac{1}{2} \) .

Now, we consider the upper bound of \( \frac{{c_{3}}(X)}{c_{1}^{3}(X)} \)

Because \( {A_{i}}=\sum _{t=1}^{n} {d_{ti}}-2≥6n-2, \) we have

\( \begin{array}{c} \frac{\frac{8}{3}}{{A_{i}}{A_{j}}{A_{k}}}+\frac{1}{{A_{k}}}+\frac{2}{{A_{j}}{A_{k}}}+\frac{\frac{1}{6}{C_{ijk}}}{{A_{i}}{A_{j}}{A_{k}}} \\ \lt \frac{\frac{8}{3}}{(6n-2{)^{3}}}+\frac{1}{6n-2}+\frac{2}{(6n-2{)^{2}}}+\frac{1}{6} \\ ≤\frac{8}{3}+\frac{1}{4}+\frac{2}{16}+\frac{1}{6} \\ =\frac{1}{24}+\frac{1}{4}+\frac{1}{8}+\frac{1}{6} \\ =\frac{7}{12}. \end{array} \ \ \ (12) \)

5. Conclusions

In this paper, we take \( M=\underset{n+3}{\underbrace{{P^{1}}×{P^{1}}×⋯×{P^{1}}}} \) as an example to calculate the Chern numbers of complete intersection three-folds in products of projective spaces. Thus, in our conclusion, we get its Chern number and the inequalities that it will satisfy:

If \( {d_{ij}}≥4 \) for any \( 1≤i≤n,1≤j≤n+3, \) then we have \( \frac{1}{2} \lt \frac{{c_{1}}(X){c_{2}}(X)}{c_{1}^{3}(X)} \lt \frac{2}{(4n-2{)^{2}}}+\frac{2}{4n-2}+1 \) . If \( {d_{ij}}≥6 \) for any \( 1≤i≤n,1≤j≤n+3 \) , then \( \frac{{c_{1}}(\bar{X}){c_{2}}(X)}{c_{1}^{3}(X)}-\frac{1}{2} \lt \frac{{c_{3}}(X)}{c_{1}^{3}(X)} \lt \frac{7}{12}. \)

However, those conclusions build up on an important assumption, which is the value of \( {d_{ij}} \) . This means that there is still room for exploration and explanation of those results when applying other values of \( {d_{ij}} \) .

As for the future meaning of research into this field, it may help in the field of physics. For instance, Miyaoka-Yau type inequalities are widely applied to the quantum mechanics and field theory, so we believe researches like this can be applied to more different conditions.

Acknowledgments

We would like to thank our mentor Prof. Sun Hao, who provided support on choosing the topic and revising our paper. We learned a lot about this subtle field of mathematics under his patient guidance.

Moreover, we would like to appreciate the support given by our family when writing this paper.


References

[1]. Christian, & Liedtke. (2008). Algebraic surfaces of general type with small c21 in positive characteristic. Nagoya Mathematical Journal.

[2]. S.-T., Y. (1977). Calabi’s conjecture and some new results in algebraic geometry. Proceedings of the National Academy of Sciences.

[3]. Bruce, & Hunt. (1989). Complex manifold geography in dimension {2} and {3}. Journal of Differential Geometry.

[4]. Mei-Chu, ChangAngelo, Felice, & Lopez. (2001). A linear bound on the euler number of threefolds of calabi–yau and of general type. Manuscripta Mathematica.

[5]. Sheng, M. , Xu, J. , & Zhang, M. . (2014). On the chern number inequalities satisfied by all smooth complete intersection threefolds with ample canonical class. International Journal of Mathematics, 25(4), 1450029-.

[6]. Du, R., & Sun, H. (2017). Inequalities of chern classes on nonsingular projective n-folds of fano or general type with ample canonical bundle.


Cite this article

Zhang,M.;Zhang,M. (2023). Miyaoka-Yau type inequalities of complete intersection threefolds in products of projective. Theoretical and Natural Science,14,8-17.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Computing Innovation and Applied Physics

ISBN:978-1-83558-191-9(Print) / 978-1-83558-192-6(Online)
Editor:Yazeed Ghadi
Conference website: https://www.confciap.org/
Conference date: 27 January 2024
Series: Theoretical and Natural Science
Volume number: Vol.14
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Christian, & Liedtke. (2008). Algebraic surfaces of general type with small c21 in positive characteristic. Nagoya Mathematical Journal.

[2]. S.-T., Y. (1977). Calabi’s conjecture and some new results in algebraic geometry. Proceedings of the National Academy of Sciences.

[3]. Bruce, & Hunt. (1989). Complex manifold geography in dimension {2} and {3}. Journal of Differential Geometry.

[4]. Mei-Chu, ChangAngelo, Felice, & Lopez. (2001). A linear bound on the euler number of threefolds of calabi–yau and of general type. Manuscripta Mathematica.

[5]. Sheng, M. , Xu, J. , & Zhang, M. . (2014). On the chern number inequalities satisfied by all smooth complete intersection threefolds with ample canonical class. International Journal of Mathematics, 25(4), 1450029-.

[6]. Du, R., & Sun, H. (2017). Inequalities of chern classes on nonsingular projective n-folds of fano or general type with ample canonical bundle.