References
[1]. Fogel, S. M., Smith, C. T., & Cote, K. A. (2007). Dissociable learning-dependent changes in REM and non-REM sleep in declarative and procedural memory systems. Behavioural Brain Research, 180(1), 48-61.
[2]. Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9(4), 534-547.
[3]. Marshall, L., Helgadóttir, H., Mölle, M., & Born, J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature, 444(7119), 610-613.
[4]. Ruby, N. F., Hwang, C. E., Wessells, C., Fernandez, F., Zhang, P., Sapolsky, R., & Heller, H. C. (2008). Hippocampal-dependent learning requires a functional circadian system. Proceedings of the National Academy of Sciences, 105(40), 15593-15598.
[5]. Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. Journal of Neuroscience, 30(43), 14356-14360.
[6]. Buchegger, J., Fritsch, R., Meier-Koll, A., & Riehle, H. (1991). Does trampolining and anaerobic physical fitness affect sleep?. Perceptual and Motor Skills, 73(1), 243-252.
[7]. Fanjaud, G., Calvet, U., Rous de Feneyrols, A., Barrere, M., Bes, A., & Arbus, L. (1982). The role of paradoxical sleep in learning in man. Revue D'electroencephalographie et de Neurophysiologie Clinique, 12(4), 337-343.
[8]. Fischer, S., Hallschmid, M., Elsner, A. L., & Born, J. (2002). Sleep forms memory for finger skills. Proceedings of the National Academy of Sciences, 99(18), 11987-11991.
[9]. Genzel, L., Dresler, M., Wehrle, R., Grözinger, M., & Steiger, A. (2009). Slow wave sleep and REM sleep awakenings do not affect sleep-dependent memory consolidation. Sleep, 32(3), 302-310.
[10]. Saxvig, I. W., Lundervold, A. J., Grønli, J., Ursin, R., Bjorvatn, B., & Portas, C. M. (2008). The effect of a REM sleep deprivation procedure on different aspects of memory function in humans. Psychophysiology, 45(2), 309-317.
[11]. Crupi, D., Hulse, B. K., Peterson, M. J., Huber, R., Ansari, H., Coen, M., ... & Tononi, G. (2009). Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep, 32(10), 1273-1284.
[12]. Nishida, M., & Walker, M. P. (2007). Daytime naps, motor memory consolidation and regionally specific sleep spindles. PloS One, 2(4), e341.
[13]. Smith, C. (1995). Sleep states and memory processes. Behavioural Brain Research, 69(1-2), 137-145.
[14]. Smith, C., & MacNeill, C. (1994). Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students. Journal of Sleep Research, 3(4), 206-213.
[15]. Peters, K. R., Smith, V., & Smith, C. T. (2007). Changes in sleep architecture following motor learning depend on initial skill level. Journal of Cognitive Neuroscience, 19(5), 817-829.
[16]. Smith, C. T., Nixon, M. R., & Nader, R. S. (2004). Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learning & Memory, 11(6), 714-719.
[17]. Brand, S., Opwis, K., Hatzinger, M., & Holsboer-Trachsler, E. (2010). REM sleep is related to the transfer of implicit procedural knowledge following metacognitive learning. Somnologie-Schlafforschung und Schlafmedizin, 14(3), 213-220.
[18]. Suzuki, H., Aritake, S., Kuga, R., Uchiyama, M., Kuriyama, K., Enomoto, M., & Mishima, K. (2012). Alpha activity during rem sleep contributes to overnight improvement in performance on a visual discrimination task. Perceptual and Motor Skills, 115(2), 337-348.
[19]. Picard-Deland, C., Aumont, T., Samson-Richer, A., Paquette, T., & Nielsen, T. (2021). Whole-body procedural learning benefits from targeted memory reactivation in REM sleep and task-related dreaming. Neurobiology of Learning and Memory, 183, 107460.
[20]. Barakat, M., Carrier, J., Debas, K., Lungu, O., Fogel, S., Vandewalle, G., ... & Doyon, J. (2013). Sleep spindles predict neural and behavioral changes in motor sequence consolidation. Human Brain Mapping, 34(11), 2918-2928.
[21]. Albouy, G., Sterpenich, V., Vandewalle, G., Darsaud, A., Gais, S., Rauchs, G., ... & Maquet, P. (2013). Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory. PloS One, 8(3), e59490.
[22]. Albouy, G., King, B. R., Maquet, P., & Doyon, J. (2013). Hippocampus and striatum: Dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus, 23(11), 985-1004.
[23]. Rasch, B., Gais, S., & Born, J. (2009). Impaired off-line consolidation of motor memories after combined blockade of cholinergic receptors during REM sleep-rich sleep. Neuropsychopharmacology, 34(7), 1843-1853.
[24]. Li, W., Ma, L., Yang, G., & Gan, W. B. (2017). REM sleep selectively prunes and maintains new synapses in development and learning. Nature Neuroscience, 20(3), 427-437.
[25]. Zhou, Y., Lai, C. S. W., Bai, Y., Li, W., Zhao, R., Yang, G., ... & Gan, W. B. (2020). REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nature Communications, 11(1), 4819.
Cite this article
Zhou,P. (2023). Research on the contribution of REM sleep to procedural learning. Theoretical and Natural Science,21,140-145.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 3rd International Conference on Biological Engineering and Medical Science
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. Fogel, S. M., Smith, C. T., & Cote, K. A. (2007). Dissociable learning-dependent changes in REM and non-REM sleep in declarative and procedural memory systems. Behavioural Brain Research, 180(1), 48-61.
[2]. Plihal, W., & Born, J. (1997). Effects of early and late nocturnal sleep on declarative and procedural memory. Journal of Cognitive Neuroscience, 9(4), 534-547.
[3]. Marshall, L., Helgadóttir, H., Mölle, M., & Born, J. (2006). Boosting slow oscillations during sleep potentiates memory. Nature, 444(7119), 610-613.
[4]. Ruby, N. F., Hwang, C. E., Wessells, C., Fernandez, F., Zhang, P., Sapolsky, R., & Heller, H. C. (2008). Hippocampal-dependent learning requires a functional circadian system. Proceedings of the National Academy of Sciences, 105(40), 15593-15598.
[5]. Tamminen, J., Payne, J. D., Stickgold, R., Wamsley, E. J., & Gaskell, M. G. (2010). Sleep spindle activity is associated with the integration of new memories and existing knowledge. Journal of Neuroscience, 30(43), 14356-14360.
[6]. Buchegger, J., Fritsch, R., Meier-Koll, A., & Riehle, H. (1991). Does trampolining and anaerobic physical fitness affect sleep?. Perceptual and Motor Skills, 73(1), 243-252.
[7]. Fanjaud, G., Calvet, U., Rous de Feneyrols, A., Barrere, M., Bes, A., & Arbus, L. (1982). The role of paradoxical sleep in learning in man. Revue D'electroencephalographie et de Neurophysiologie Clinique, 12(4), 337-343.
[8]. Fischer, S., Hallschmid, M., Elsner, A. L., & Born, J. (2002). Sleep forms memory for finger skills. Proceedings of the National Academy of Sciences, 99(18), 11987-11991.
[9]. Genzel, L., Dresler, M., Wehrle, R., Grözinger, M., & Steiger, A. (2009). Slow wave sleep and REM sleep awakenings do not affect sleep-dependent memory consolidation. Sleep, 32(3), 302-310.
[10]. Saxvig, I. W., Lundervold, A. J., Grønli, J., Ursin, R., Bjorvatn, B., & Portas, C. M. (2008). The effect of a REM sleep deprivation procedure on different aspects of memory function in humans. Psychophysiology, 45(2), 309-317.
[11]. Crupi, D., Hulse, B. K., Peterson, M. J., Huber, R., Ansari, H., Coen, M., ... & Tononi, G. (2009). Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep, 32(10), 1273-1284.
[12]. Nishida, M., & Walker, M. P. (2007). Daytime naps, motor memory consolidation and regionally specific sleep spindles. PloS One, 2(4), e341.
[13]. Smith, C. (1995). Sleep states and memory processes. Behavioural Brain Research, 69(1-2), 137-145.
[14]. Smith, C., & MacNeill, C. (1994). Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students. Journal of Sleep Research, 3(4), 206-213.
[15]. Peters, K. R., Smith, V., & Smith, C. T. (2007). Changes in sleep architecture following motor learning depend on initial skill level. Journal of Cognitive Neuroscience, 19(5), 817-829.
[16]. Smith, C. T., Nixon, M. R., & Nader, R. S. (2004). Posttraining increases in REM sleep intensity implicate REM sleep in memory processing and provide a biological marker of learning potential. Learning & Memory, 11(6), 714-719.
[17]. Brand, S., Opwis, K., Hatzinger, M., & Holsboer-Trachsler, E. (2010). REM sleep is related to the transfer of implicit procedural knowledge following metacognitive learning. Somnologie-Schlafforschung und Schlafmedizin, 14(3), 213-220.
[18]. Suzuki, H., Aritake, S., Kuga, R., Uchiyama, M., Kuriyama, K., Enomoto, M., & Mishima, K. (2012). Alpha activity during rem sleep contributes to overnight improvement in performance on a visual discrimination task. Perceptual and Motor Skills, 115(2), 337-348.
[19]. Picard-Deland, C., Aumont, T., Samson-Richer, A., Paquette, T., & Nielsen, T. (2021). Whole-body procedural learning benefits from targeted memory reactivation in REM sleep and task-related dreaming. Neurobiology of Learning and Memory, 183, 107460.
[20]. Barakat, M., Carrier, J., Debas, K., Lungu, O., Fogel, S., Vandewalle, G., ... & Doyon, J. (2013). Sleep spindles predict neural and behavioral changes in motor sequence consolidation. Human Brain Mapping, 34(11), 2918-2928.
[21]. Albouy, G., Sterpenich, V., Vandewalle, G., Darsaud, A., Gais, S., Rauchs, G., ... & Maquet, P. (2013). Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory. PloS One, 8(3), e59490.
[22]. Albouy, G., King, B. R., Maquet, P., & Doyon, J. (2013). Hippocampus and striatum: Dynamics and interaction during acquisition and sleep-related motor sequence memory consolidation. Hippocampus, 23(11), 985-1004.
[23]. Rasch, B., Gais, S., & Born, J. (2009). Impaired off-line consolidation of motor memories after combined blockade of cholinergic receptors during REM sleep-rich sleep. Neuropsychopharmacology, 34(7), 1843-1853.
[24]. Li, W., Ma, L., Yang, G., & Gan, W. B. (2017). REM sleep selectively prunes and maintains new synapses in development and learning. Nature Neuroscience, 20(3), 427-437.
[25]. Zhou, Y., Lai, C. S. W., Bai, Y., Li, W., Zhao, R., Yang, G., ... & Gan, W. B. (2020). REM sleep promotes experience-dependent dendritic spine elimination in the mouse cortex. Nature Communications, 11(1), 4819.