References
[1]. R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”.
[2]. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” arXiv, Jan. 06, 2016. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/1506.01497
[3]. L. Du, R. Zhang, and X. Wang, “Overview of two-stage object detection algorithms,” J. Phys.: Conf. Ser., vol. 1544, no. 1, p. 012033, May 2020, doi: 10.1088/1742-6596/1544/1/012033.
[4]. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN.” arXiv, Jan. 24, 2018. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/1703.06870
[5]. J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger.” arXiv, Dec. 25, 2016. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/1612.08242
[6]. W. Liu et al., “SSD: Single Shot MultiBox Detector,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., in Lecture Notes in Computer Science, vol. 9905. Cham: Springer International Publishing, 2016, pp. 21–37. doi: 10.1007/978-3-319-46448-0_2.
[7]. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection.” arXiv, May 09, 2016. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/1506.02640
[8]. K. J. Oguine, O. C. Oguine, and H. I. Bisallah, “YOLO v3: Visual and Real-Time Object Detection Model for Smart Surveillance Systems(3s).” arXiv, Sep. 26, 2022. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/2209.12447
[9]. C.-J. Lin, S.-Y. Jeng, and H.-W. Lioa, “A Real-Time Vehicle Counting, Speed Estimation, and Classification System Based on Virtual Detection Zone and YOLO,” Mathematical Problems in Engineering, vol. 2021, pp. 1–10, Nov. 2021, doi: 10.1155/2021/1577614.
[10]. K. J. Oguine, O. C. Oguine, and H. I. Bisallah, “YOLO v3: Visual and Real-Time Object Detection Model for Smart Surveillance Systems(3s).” arXiv, Sep. 26, 2022. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/2209.12447
Cite this article
Guan,Z. (2023). Real time object recognition based on YOLO model. Theoretical and Natural Science,28,137-143.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 2023 International Conference on Mathematical Physics and Computational Simulation
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation”.
[2]. S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” arXiv, Jan. 06, 2016. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/1506.01497
[3]. L. Du, R. Zhang, and X. Wang, “Overview of two-stage object detection algorithms,” J. Phys.: Conf. Ser., vol. 1544, no. 1, p. 012033, May 2020, doi: 10.1088/1742-6596/1544/1/012033.
[4]. K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN.” arXiv, Jan. 24, 2018. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/1703.06870
[5]. J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger.” arXiv, Dec. 25, 2016. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/1612.08242
[6]. W. Liu et al., “SSD: Single Shot MultiBox Detector,” in Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds., in Lecture Notes in Computer Science, vol. 9905. Cham: Springer International Publishing, 2016, pp. 21–37. doi: 10.1007/978-3-319-46448-0_2.
[7]. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-Time Object Detection.” arXiv, May 09, 2016. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/1506.02640
[8]. K. J. Oguine, O. C. Oguine, and H. I. Bisallah, “YOLO v3: Visual and Real-Time Object Detection Model for Smart Surveillance Systems(3s).” arXiv, Sep. 26, 2022. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/2209.12447
[9]. C.-J. Lin, S.-Y. Jeng, and H.-W. Lioa, “A Real-Time Vehicle Counting, Speed Estimation, and Classification System Based on Virtual Detection Zone and YOLO,” Mathematical Problems in Engineering, vol. 2021, pp. 1–10, Nov. 2021, doi: 10.1155/2021/1577614.
[10]. K. J. Oguine, O. C. Oguine, and H. I. Bisallah, “YOLO v3: Visual and Real-Time Object Detection Model for Smart Surveillance Systems(3s).” arXiv, Sep. 26, 2022. Accessed: Jul. 03, 2023. [Online]. Available: http://arxiv.org/abs/2209.12447