Impact of High-Fat Diet on Obesity-Related Diseases: The Role of Gut Microbiota-Derived Short-Chain Fatty Acids

Research Article
Open access

Impact of High-Fat Diet on Obesity-Related Diseases: The Role of Gut Microbiota-Derived Short-Chain Fatty Acids

Yingsi Fang 1 , Zhe Kan 2 , Shuyi Dong 3 , Lei Yan 4 , Yuting Tang 5*
  • 1 The department of nutritional science, University of Toronto, Toronto, M5S 1A1, Canada    
  • 2 The High School Affiliated to Renmin University of China, Beijing, 101100, China    
  • 3 Shanghai World Foreign Language Middle School, Shanghai, 200233, China    
  • 4 Changzhou Cardiff School, Changzhou, 213000, China    
  • 5 Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda (CAM-SU) Genomic Resource Center, Medical College of Soochow University, Suzhou, 215021, China    
  • *corresponding author 20234050005@stu.suda.edu.cn
Published on 20 June 2025 | https://doi.org/10.54254/2753-8818/2025.24207
TNS Vol.116
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-197-6
ISBN (Online): 978-1-80590-198-3

Abstract

The popularity of fast food has led to a rapid global increase in high-fat diets (HFD) recently. The prevalence of HFD has raised public concerns about metabolic health. Animal studies and clinical trials have implied the alternations of gut microbiota components when HFD, thereby influencing their metabolites abundances, specifically short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which play important roles in host physiological activities. Alternations in intestinal flora abundance and components may also exacerbate gut permeability, potentially initiating inflammation which is a start of various chronic diseases. This review primarily explores mechanisms by which HFD induces obesity-related diseases, including metabolic dysfunction-associated steatotic liver disease, atherosclerosis, and type 2 diabetes mellitus. Additionally, this review demonstrates the role and effectiveness of intestinal flora, especially probiotics, and their derived SCFAs in preventing disease progression and promoting tissue regeneration in HFD-induced disorders. An intensive study on the significance of intestinal flora and their derived SCFAs to disease progression and therapeutic targets can help supplement the loop between microbial and host homeostasis.

Keywords:

high-fat diet, intestinal flora, probiotics, short-chain fatty acids, obesity-related diseases

Fang,Y.;Kan,Z.;Dong,S.;Yan,L.;Tang,Y. (2025). Impact of High-Fat Diet on Obesity-Related Diseases: The Role of Gut Microbiota-Derived Short-Chain Fatty Acids. Theoretical and Natural Science,116,27-36.
Export citation

References

[1]. Lu, Y., Yuan, X., Wang, M., He, Z., Li, H., Wang, J., Li, Q., Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies, Journal of hematology & oncology 15(1) (2022) 47.

[2]. Lee, Y., Kamada, N., Moon, J.J., Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome, Advanced drug delivery reviews 179 (2021) 114021.

[3]. Honarpisheh, P., Bryan, R.M., McCullough, L.D., Aging Microbiota-Gut-Brain Axis in Stroke Risk and Outcome, Circulation research 130(8) (2022) 1112-1144.

[4]. Gentile, C.L., Weir, T.L., The gut microbiota at the intersection of diet and human health, Science (New York, N.Y.) 362(6416) (2018) 776-780.

[5]. Hill, C.J., Lynch, D.B., Murphy, K., Ulaszewska, M., Jeffery, I.B., O'Shea, C.A., Watkins, C., Dempsey, E., Mattivi, F., Tuohy, K., Ross, R.P., Ryan, C.A., PW, O.T., Stanton, C., Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort, Microbiome 5(1) (2017) 4.

[6]. Hopkins, M.J., Sharp, R., Macfarlane, G.T., Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles, Gut 48(2) (2001) 198-205.

[7]. Zmora, N., Suez, J., Elinav, E., You are what you eat: diet, health and the gut microbiota, Nature reviews. Gastroenterology & hepatology 16(1) (2019) 35-56.

[8]. Krisanits, B., Randise, J.F., Burton, C.E., Findlay, V.J., Turner, D.P., Pubertal mammary development as a "susceptibility window" for breast cancer disparity, Advances in cancer research 146 (2020) 57-82.

[9]. Popkin, B.M., Adair, L.S., Ng, S.W., Global nutrition transition and the pandemic of obesity in developing countries, Nutrition reviews 70(1) (2012) 3-21.

[10]. da Cruz, L.L., Vesentini, G., Sinzato, Y.K., Villaverde, A., Volpato, G.T., Damasceno, D.C., Effects of high-fat diet-induced diabetes on autophagy in the murine liver: A systematic review and meta-analysis, Life sciences 309 (2022) 121012.

[11]. Guinane, C.M., Cotter, P.D., Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ, Therapeutic advances in gastroenterology 6(4) (2013) 295-308.

[12]. Bouter, K.E., van Raalte, D.H., Groen, A.K., Nieuwdorp, M., Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction, Gastroenterology 152(7) (2017) 1671-1678.

[13]. Sergeev, I.N., Aljutaily, T., Walton, G., Huarte, E., Effects of Synbiotic Supplement on Human Gut Microbiota, Body Composition and Weight Loss in Obesity, Nutrients 12(1) (2020).

[14]. Hong, Y., Sheng, L., Zhong, J., Tao, X., Zhu, W., Ma, J., Yan, J., Zhao, A., Zheng, X., Wu, G., Li, B., Han, B., Ding, K., Zheng, N., Jia, W., Li, H., Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice, Gut microbes 13(1) (2021) 1-20.

[15]. Hong, Y., Sheng, L., Zhong, J., Tao, X., Zhu, W., Ma, J., Yan, J., Zhao, A., Zheng, X., Wu, G., Li, B., Han, B., Ding, K., Zheng, N., Jia, W., Li, H., Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice, Gut microbes 13(1) (2021) 1-20.

[16]. Sarkar, A., Mitra, P., Lahiri, A., Das, T., Sarkar, J., Paul, S., Chakrabarti, P., Butyrate limits inflammatory macrophage niche in NASH, Cell death & disease 14(5) (2023) 332.

[17]. Song, Q., Zhang, X., Liu, W., Wei, H., Liang, W., Zhou, Y., Ding, Y., Ji, F., Ho-Kwan Cheung, A., Wong, N., Yu, J., Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma, Journal of hepatology 79(6) (2023) 1352-1365.

[18]. Takayama, S., Katada, K., Takagi, T., Iida, T., Ueda, T., Mizushima, K., Higashimura, Y., Morita, M., Okayama, T., Kamada, K., Uchiyama, K., Handa, O., Ishikawa, T., Yasukawa, Z., Okubo, T., Itoh, Y., Naito, Y., Partially hydrolyzed guar gum attenuates non-alcoholic fatty liver disease in mice through the gut-liver axis, World journal of gastroenterology 27(18) (2021) 2160-2176.

[19]. Takayama, S., Katada, K., Takagi, T., Iida, T., Ueda, T., Mizushima, K., Higashimura, Y., Morita, M., Okayama, T., Kamada, K., Uchiyama, K., Handa, O., Ishikawa, T., Yasukawa, Z., Okubo, T., Itoh, Y., Naito, Y., Partially hydrolyzed guar gum attenuates non-alcoholic fatty liver disease in mice through the gut-liver axis, World journal of gastroenterology 27(18) (2021) 2160-2176.

[20]. Ecklu-Mensah, G., Choo-Kang, C., Maseng, M.G., Donato, S., Bovet, P., Viswanathan, B., Bedu-Addo, K., Plange-Rhule, J., Oti Boateng, P., Forrester, T.E., Williams, M., Lambert, E.V., Rae, D., Sinyanya, N., Luke, A., Layden, B.T., O'Keefe, S., Gilbert, J.A., Dugas, L.R., Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study, Nature communications 14(1) (2023) 5160.

[21]. Panyod, S., Wu, W.K., Peng, S.Y., Tseng, Y.J., Hsieh, Y.C., Chen, R.A., Huang, H.S., Chen, Y.H., Chuang, H.L., Hsu, C.C., Shen, T.D., Yang, K.C., Ho, C.T., Wu, M.S., Sheen, L.Y., Ginger essential oil and citral ameliorates atherosclerosis in ApoE(-/-) mice by modulating trimethylamine-N-oxide and gut microbiota, NPJ science of food 7(1) (2023) 19.

[22]. Luo, T., Guo, Z., Liu, D., Guo, Z., Wu, Q., Li, Q., Lin, R., Chen, P., Ou, C., Chen, M., Deficiency of PSRC1 accelerates atherosclerosis by increasing TMAO production via manipulating gut microbiota and flavin monooxygenase 3, Gut microbes 14(1) (2022) 2077602.

[23]. Shi, X., Huang, H., Zhou, M., Liu, Y., Wu, H., Dai, M., Paeonol Attenuated Vascular Fibrosis Through Regulating Treg/Th17 Balance in a Gut Microbiota-Dependent Manner, Frontiers in pharmacology 12 (2021) 765482.

[24]. Tian, Q., Leung, F.P., Chen, F.M., Tian, X.Y., Chen, Z., Tse, G., Ma, S., Wong, W.T., Butyrate protects endothelial function through PPARδ/miR-181b signaling, Pharmacological research 169 (2021) 105681.

[25]. Haghikia, A., Zimmermann, F., Schumann, P., Jasina, A., Roessler, J., Schmidt, D., Heinze, P., Kaisler, J., Nageswaran, V., Aigner, A., Ceglarek, U., Cineus, R., Hegazy, A.N., van der Vorst, E.P.C., Döring, Y., Strauch, C.M., Nemet, I., Tremaroli, V., Dwibedi, C., Kränkel, N., Leistner, D.M., Heimesaat, M.M., Bereswill, S., Rauch, G., Seeland, U., Soehnlein, O., Müller, D.N., Gold, R., Bäckhed, F., Hazen, S.L., Haghikia, A., Landmesser, U., Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism, European heart journal 43(6) (2022) 518-533.

[26]. Liu, S., Qin, P., Wang, J., High-Fat Diet Alters the Intestinal Microbiota in Streptozotocin-Induced Type 2 Diabetic Mice, Microorganisms 7(6) (2019).

[27]. Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., Burcelin, R., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice, Diabetes 57(6) (2008) 1470-81.

[28]. Fang, W., Xue, H., Chen, X., Chen, K., Ling, W., Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice, The Journal of nutrition 149(5) (2019) 747-754.

[29]. Lu, Y., Fan, C., Liang, A., Fan, X., Wang, R., Li, P., Qi, K., Effects of SCFA on the DNA methylation pattern of adiponectin and resistin in high-fat-diet-induced obese male mice, The British journal of nutrition 120(4) (2018) 385-392.

[30]. Vendrell, J., Broch, M., Vilarrasa, N., Molina, A., Gómez, J.M., Gutiérrez, C., Simón, I., Soler, J., Richart, C., Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity, Obesity research 12(6) (2004) 962-71.

[31]. Du, J., Zhang, P., Luo, J., Shen, L., Zhang, S., Gu, H., He, J., Wang, L., Zhao, X., Gan, M., Yang, L., Niu, L., Zhao, Y., Tang, Q., Tang, G., Jiang, D., Jiang, Y., Li, M., Jiang, A., Jin, L., Ma, J., Shuai, S., Bai, L., Wang, J., Zeng, B., Wu, D., Li, X., Zhu, L., Dietary betaine prevents obesity through gut microbiota-drived microRNA-378a family, Gut microbes 13(1) (2021) 1-19.

[32]. Ottman, N., Geerlings, S.Y., Aalvink, S., de Vos, W.M., Belzer, C., Action and function of Akkermansia muciniphila in microbiome ecology, health and disease, Best practice & research. Clinical gastroenterology 31(6) (2017) 637-642.

[33]. Watanabe, A., Tochio, T., Kadota, Y., Takahashi, M., Kitaura, Y., Ishikawa, H., Yasutake, T., Nakano, M., Shinohara, H., Kudo, T., Nishimoto, Y., Mizuguchi, Y., Endo, A., Shimomura, Y., Supplementation of 1-Kestose Modulates the Gut Microbiota Composition to Ameliorate Glucose Metabolism in Obesity-Prone Hosts, Nutrients 13(9) (2021).

[34]. Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., Dulai, P.S., Caussy, C., Bettencourt, R., Highlander, S.K., Jones, M.B., Sirlin, C.B., Schnabl, B., Brinkac, L., Schork, N., Chen, C.H., Brenner, D.A., Biggs, W., Yooseph, S., Venter, J.C., Nelson, K.E., Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease, Cell metabolism 25(5) (2017) 1054-1062.e5.

[35]. Zhu, L., Baker, S.S., Gill, C., Liu, W., Alkhouri, R., Baker, R.D., Gill, S.R., Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH, Hepatology (Baltimore, Md.) 57(2) (2013) 601-9.

[36]. Liu, S., Kang, W., Mao, X., Ge, L., Du, H., Li, J., Hou, L., Liu, D., Yin, Y., Liu, Y., Huang, K., Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice, Journal of pineal research 73(2) (2022) e12812.

[37]. Shashni, B., Tajika, Y., Ikeda, Y., Nishikawa, Y., Nagasaki, Y., Self-assembling polymer-based short chain fatty acid prodrugs ameliorate non-alcoholic steatohepatitis and liver fibrosis, Biomaterials 295 (2023) 122047.

[38]. Wang, Y., Dilidaxi, D., Wu, Y., Sailike, J., Sun, X., Nabi, X.H., Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 125 (2020) 109914.

[39]. Pedersen, S.S., Ingerslev, L.R., Olsen, M., Prause, M., Billestrup, N., Butyrate functions as a histone deacetylase inhibitor to protect pancreatic beta cells from IL-1β-induced dysfunction, The FEBS journal 291(3) (2024) 566-583.

[40]. Fawad, J.A., Luzader, D.H., Hanson, G.F., Moutinho, T.J., Jr., McKinney, C.A., Mitchell, P.G., Brown-Steinke, K., Kumar, A., Park, M., Lee, S., Bolick, D.T., Medlock, G.L., Zhao, J.Y., Rosselot, A.E., Chou, C.J., Eshleman, E.M., Alenghat, T., Hong, C.I., Papin, J.A., Moore, S.R., Histone Deacetylase Inhibition by Gut Microbe-Generated Short-Chain Fatty Acids Entrains Intestinal Epithelial Circadian Rhythms, Gastroenterology 163(5) (2022) 1377-1390.e11.

[41]. Lu, H., Xu, X., Fu, D., Gu, Y., Fan, R., Yi, H., He, X., Wang, C., Ouyang, B., Zhao, P., Wang, L., Xu, P., Cheng, S., Wang, Z., Zou, D., Han, L., Zhao, W., Butyrate-producing Eubacterium rectale suppresses lymphomagenesis by alleviating the TNF-induced TLR4/MyD88/NF-κB axis, Cell host & microbe 30(8) (2022) 1139-1150.e7.

[42]. Tolhurst, G., Heffron, H., Lam, Y.S., Parker, H.E., Habib, A.M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F., Gribble, F.M., Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2, Diabetes 61(2) (2012) 364-71.

[43]. Rittiphairoj, T., Pongpirul, K., Janchot, K., Mueller, N.T., Li, T., Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis, Advances in nutrition (Bethesda, Md.) 12(3) (2021) 722-734.

[44]. Wang, S., Ren, H., Zhong, H., Zhao, X., Li, C., Ma, J., Gu, X., Xue, Y., Huang, S., Yang, J., Chen, L., Chen, G., Qu, S., Liang, J., Qin, L., Huang, Q., Peng, Y., Li, Q., Wang, X., Zou, Y., Shi, Z., Li, X., Li, T., Yang, H., Lai, S., Xu, G., Li, J., Zhang, Y., Gu, Y., Wang, W., Combined berberine and probiotic treatment as an effective regimen for improving postprandial hyperlipidemia in type 2 diabetes patients: a double blinded placebo controlled randomized study, Gut microbes 14(1) (2022) 2003176.

[45]. Luo, J., Jiang, L., Gao, B., Chai, Y., Bao, Y., Comprehensive in silico analysis of the probiotics, and preparation of compound probiotics-Polygonatum sibiricum saponin with hypoglycemic properties, Food chemistry 404(Pt A) (2023) 134569.

[46]. Quinn-Bohmann, N., Wilmanski, T., Sarmiento, K.R., Levy, L., Lampe, J.W., Gurry, T., Rappaport, N., Ostrem, E.M., Venturelli, O.S., Diener, C., Gibbons, S.M., Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut, Nature microbiology 9(7) (2024) 1700-1712.


Cite this article

Fang,Y.;Kan,Z.;Dong,S.;Yan,L.;Tang,Y. (2025). Impact of High-Fat Diet on Obesity-Related Diseases: The Role of Gut Microbiota-Derived Short-Chain Fatty Acids. Theoretical and Natural Science,116,27-36.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Modern Medicine and Global Health

ISBN:978-1-80590-197-6(Print) / 978-1-80590-198-3(Online)
Editor:Sheiladevi Sukumaran
Conference website: https://2025.icmmgh.org/
Conference date: 20 January 2025
Series: Theoretical and Natural Science
Volume number: Vol.116
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Lu, Y., Yuan, X., Wang, M., He, Z., Li, H., Wang, J., Li, Q., Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies, Journal of hematology & oncology 15(1) (2022) 47.

[2]. Lee, Y., Kamada, N., Moon, J.J., Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome, Advanced drug delivery reviews 179 (2021) 114021.

[3]. Honarpisheh, P., Bryan, R.M., McCullough, L.D., Aging Microbiota-Gut-Brain Axis in Stroke Risk and Outcome, Circulation research 130(8) (2022) 1112-1144.

[4]. Gentile, C.L., Weir, T.L., The gut microbiota at the intersection of diet and human health, Science (New York, N.Y.) 362(6416) (2018) 776-780.

[5]. Hill, C.J., Lynch, D.B., Murphy, K., Ulaszewska, M., Jeffery, I.B., O'Shea, C.A., Watkins, C., Dempsey, E., Mattivi, F., Tuohy, K., Ross, R.P., Ryan, C.A., PW, O.T., Stanton, C., Evolution of gut microbiota composition from birth to 24 weeks in the INFANTMET Cohort, Microbiome 5(1) (2017) 4.

[6]. Hopkins, M.J., Sharp, R., Macfarlane, G.T., Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles, Gut 48(2) (2001) 198-205.

[7]. Zmora, N., Suez, J., Elinav, E., You are what you eat: diet, health and the gut microbiota, Nature reviews. Gastroenterology & hepatology 16(1) (2019) 35-56.

[8]. Krisanits, B., Randise, J.F., Burton, C.E., Findlay, V.J., Turner, D.P., Pubertal mammary development as a "susceptibility window" for breast cancer disparity, Advances in cancer research 146 (2020) 57-82.

[9]. Popkin, B.M., Adair, L.S., Ng, S.W., Global nutrition transition and the pandemic of obesity in developing countries, Nutrition reviews 70(1) (2012) 3-21.

[10]. da Cruz, L.L., Vesentini, G., Sinzato, Y.K., Villaverde, A., Volpato, G.T., Damasceno, D.C., Effects of high-fat diet-induced diabetes on autophagy in the murine liver: A systematic review and meta-analysis, Life sciences 309 (2022) 121012.

[11]. Guinane, C.M., Cotter, P.D., Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ, Therapeutic advances in gastroenterology 6(4) (2013) 295-308.

[12]. Bouter, K.E., van Raalte, D.H., Groen, A.K., Nieuwdorp, M., Role of the Gut Microbiome in the Pathogenesis of Obesity and Obesity-Related Metabolic Dysfunction, Gastroenterology 152(7) (2017) 1671-1678.

[13]. Sergeev, I.N., Aljutaily, T., Walton, G., Huarte, E., Effects of Synbiotic Supplement on Human Gut Microbiota, Body Composition and Weight Loss in Obesity, Nutrients 12(1) (2020).

[14]. Hong, Y., Sheng, L., Zhong, J., Tao, X., Zhu, W., Ma, J., Yan, J., Zhao, A., Zheng, X., Wu, G., Li, B., Han, B., Ding, K., Zheng, N., Jia, W., Li, H., Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice, Gut microbes 13(1) (2021) 1-20.

[15]. Hong, Y., Sheng, L., Zhong, J., Tao, X., Zhu, W., Ma, J., Yan, J., Zhao, A., Zheng, X., Wu, G., Li, B., Han, B., Ding, K., Zheng, N., Jia, W., Li, H., Desulfovibrio vulgaris, a potent acetic acid-producing bacterium, attenuates nonalcoholic fatty liver disease in mice, Gut microbes 13(1) (2021) 1-20.

[16]. Sarkar, A., Mitra, P., Lahiri, A., Das, T., Sarkar, J., Paul, S., Chakrabarti, P., Butyrate limits inflammatory macrophage niche in NASH, Cell death & disease 14(5) (2023) 332.

[17]. Song, Q., Zhang, X., Liu, W., Wei, H., Liang, W., Zhou, Y., Ding, Y., Ji, F., Ho-Kwan Cheung, A., Wong, N., Yu, J., Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma, Journal of hepatology 79(6) (2023) 1352-1365.

[18]. Takayama, S., Katada, K., Takagi, T., Iida, T., Ueda, T., Mizushima, K., Higashimura, Y., Morita, M., Okayama, T., Kamada, K., Uchiyama, K., Handa, O., Ishikawa, T., Yasukawa, Z., Okubo, T., Itoh, Y., Naito, Y., Partially hydrolyzed guar gum attenuates non-alcoholic fatty liver disease in mice through the gut-liver axis, World journal of gastroenterology 27(18) (2021) 2160-2176.

[19]. Takayama, S., Katada, K., Takagi, T., Iida, T., Ueda, T., Mizushima, K., Higashimura, Y., Morita, M., Okayama, T., Kamada, K., Uchiyama, K., Handa, O., Ishikawa, T., Yasukawa, Z., Okubo, T., Itoh, Y., Naito, Y., Partially hydrolyzed guar gum attenuates non-alcoholic fatty liver disease in mice through the gut-liver axis, World journal of gastroenterology 27(18) (2021) 2160-2176.

[20]. Ecklu-Mensah, G., Choo-Kang, C., Maseng, M.G., Donato, S., Bovet, P., Viswanathan, B., Bedu-Addo, K., Plange-Rhule, J., Oti Boateng, P., Forrester, T.E., Williams, M., Lambert, E.V., Rae, D., Sinyanya, N., Luke, A., Layden, B.T., O'Keefe, S., Gilbert, J.A., Dugas, L.R., Gut microbiota and fecal short chain fatty acids differ with adiposity and country of origin: the METS-microbiome study, Nature communications 14(1) (2023) 5160.

[21]. Panyod, S., Wu, W.K., Peng, S.Y., Tseng, Y.J., Hsieh, Y.C., Chen, R.A., Huang, H.S., Chen, Y.H., Chuang, H.L., Hsu, C.C., Shen, T.D., Yang, K.C., Ho, C.T., Wu, M.S., Sheen, L.Y., Ginger essential oil and citral ameliorates atherosclerosis in ApoE(-/-) mice by modulating trimethylamine-N-oxide and gut microbiota, NPJ science of food 7(1) (2023) 19.

[22]. Luo, T., Guo, Z., Liu, D., Guo, Z., Wu, Q., Li, Q., Lin, R., Chen, P., Ou, C., Chen, M., Deficiency of PSRC1 accelerates atherosclerosis by increasing TMAO production via manipulating gut microbiota and flavin monooxygenase 3, Gut microbes 14(1) (2022) 2077602.

[23]. Shi, X., Huang, H., Zhou, M., Liu, Y., Wu, H., Dai, M., Paeonol Attenuated Vascular Fibrosis Through Regulating Treg/Th17 Balance in a Gut Microbiota-Dependent Manner, Frontiers in pharmacology 12 (2021) 765482.

[24]. Tian, Q., Leung, F.P., Chen, F.M., Tian, X.Y., Chen, Z., Tse, G., Ma, S., Wong, W.T., Butyrate protects endothelial function through PPARδ/miR-181b signaling, Pharmacological research 169 (2021) 105681.

[25]. Haghikia, A., Zimmermann, F., Schumann, P., Jasina, A., Roessler, J., Schmidt, D., Heinze, P., Kaisler, J., Nageswaran, V., Aigner, A., Ceglarek, U., Cineus, R., Hegazy, A.N., van der Vorst, E.P.C., Döring, Y., Strauch, C.M., Nemet, I., Tremaroli, V., Dwibedi, C., Kränkel, N., Leistner, D.M., Heimesaat, M.M., Bereswill, S., Rauch, G., Seeland, U., Soehnlein, O., Müller, D.N., Gold, R., Bäckhed, F., Hazen, S.L., Haghikia, A., Landmesser, U., Propionate attenuates atherosclerosis by immune-dependent regulation of intestinal cholesterol metabolism, European heart journal 43(6) (2022) 518-533.

[26]. Liu, S., Qin, P., Wang, J., High-Fat Diet Alters the Intestinal Microbiota in Streptozotocin-Induced Type 2 Diabetic Mice, Microorganisms 7(6) (2019).

[27]. Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M., Burcelin, R., Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice, Diabetes 57(6) (2008) 1470-81.

[28]. Fang, W., Xue, H., Chen, X., Chen, K., Ling, W., Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice, The Journal of nutrition 149(5) (2019) 747-754.

[29]. Lu, Y., Fan, C., Liang, A., Fan, X., Wang, R., Li, P., Qi, K., Effects of SCFA on the DNA methylation pattern of adiponectin and resistin in high-fat-diet-induced obese male mice, The British journal of nutrition 120(4) (2018) 385-392.

[30]. Vendrell, J., Broch, M., Vilarrasa, N., Molina, A., Gómez, J.M., Gutiérrez, C., Simón, I., Soler, J., Richart, C., Resistin, adiponectin, ghrelin, leptin, and proinflammatory cytokines: relationships in obesity, Obesity research 12(6) (2004) 962-71.

[31]. Du, J., Zhang, P., Luo, J., Shen, L., Zhang, S., Gu, H., He, J., Wang, L., Zhao, X., Gan, M., Yang, L., Niu, L., Zhao, Y., Tang, Q., Tang, G., Jiang, D., Jiang, Y., Li, M., Jiang, A., Jin, L., Ma, J., Shuai, S., Bai, L., Wang, J., Zeng, B., Wu, D., Li, X., Zhu, L., Dietary betaine prevents obesity through gut microbiota-drived microRNA-378a family, Gut microbes 13(1) (2021) 1-19.

[32]. Ottman, N., Geerlings, S.Y., Aalvink, S., de Vos, W.M., Belzer, C., Action and function of Akkermansia muciniphila in microbiome ecology, health and disease, Best practice & research. Clinical gastroenterology 31(6) (2017) 637-642.

[33]. Watanabe, A., Tochio, T., Kadota, Y., Takahashi, M., Kitaura, Y., Ishikawa, H., Yasutake, T., Nakano, M., Shinohara, H., Kudo, T., Nishimoto, Y., Mizuguchi, Y., Endo, A., Shimomura, Y., Supplementation of 1-Kestose Modulates the Gut Microbiota Composition to Ameliorate Glucose Metabolism in Obesity-Prone Hosts, Nutrients 13(9) (2021).

[34]. Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., Dulai, P.S., Caussy, C., Bettencourt, R., Highlander, S.K., Jones, M.B., Sirlin, C.B., Schnabl, B., Brinkac, L., Schork, N., Chen, C.H., Brenner, D.A., Biggs, W., Yooseph, S., Venter, J.C., Nelson, K.E., Gut Microbiome-Based Metagenomic Signature for Non-invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease, Cell metabolism 25(5) (2017) 1054-1062.e5.

[35]. Zhu, L., Baker, S.S., Gill, C., Liu, W., Alkhouri, R., Baker, R.D., Gill, S.R., Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH, Hepatology (Baltimore, Md.) 57(2) (2013) 601-9.

[36]. Liu, S., Kang, W., Mao, X., Ge, L., Du, H., Li, J., Hou, L., Liu, D., Yin, Y., Liu, Y., Huang, K., Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice, Journal of pineal research 73(2) (2022) e12812.

[37]. Shashni, B., Tajika, Y., Ikeda, Y., Nishikawa, Y., Nagasaki, Y., Self-assembling polymer-based short chain fatty acid prodrugs ameliorate non-alcoholic steatohepatitis and liver fibrosis, Biomaterials 295 (2023) 122047.

[38]. Wang, Y., Dilidaxi, D., Wu, Y., Sailike, J., Sun, X., Nabi, X.H., Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice, Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 125 (2020) 109914.

[39]. Pedersen, S.S., Ingerslev, L.R., Olsen, M., Prause, M., Billestrup, N., Butyrate functions as a histone deacetylase inhibitor to protect pancreatic beta cells from IL-1β-induced dysfunction, The FEBS journal 291(3) (2024) 566-583.

[40]. Fawad, J.A., Luzader, D.H., Hanson, G.F., Moutinho, T.J., Jr., McKinney, C.A., Mitchell, P.G., Brown-Steinke, K., Kumar, A., Park, M., Lee, S., Bolick, D.T., Medlock, G.L., Zhao, J.Y., Rosselot, A.E., Chou, C.J., Eshleman, E.M., Alenghat, T., Hong, C.I., Papin, J.A., Moore, S.R., Histone Deacetylase Inhibition by Gut Microbe-Generated Short-Chain Fatty Acids Entrains Intestinal Epithelial Circadian Rhythms, Gastroenterology 163(5) (2022) 1377-1390.e11.

[41]. Lu, H., Xu, X., Fu, D., Gu, Y., Fan, R., Yi, H., He, X., Wang, C., Ouyang, B., Zhao, P., Wang, L., Xu, P., Cheng, S., Wang, Z., Zou, D., Han, L., Zhao, W., Butyrate-producing Eubacterium rectale suppresses lymphomagenesis by alleviating the TNF-induced TLR4/MyD88/NF-κB axis, Cell host & microbe 30(8) (2022) 1139-1150.e7.

[42]. Tolhurst, G., Heffron, H., Lam, Y.S., Parker, H.E., Habib, A.M., Diakogiannaki, E., Cameron, J., Grosse, J., Reimann, F., Gribble, F.M., Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2, Diabetes 61(2) (2012) 364-71.

[43]. Rittiphairoj, T., Pongpirul, K., Janchot, K., Mueller, N.T., Li, T., Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis, Advances in nutrition (Bethesda, Md.) 12(3) (2021) 722-734.

[44]. Wang, S., Ren, H., Zhong, H., Zhao, X., Li, C., Ma, J., Gu, X., Xue, Y., Huang, S., Yang, J., Chen, L., Chen, G., Qu, S., Liang, J., Qin, L., Huang, Q., Peng, Y., Li, Q., Wang, X., Zou, Y., Shi, Z., Li, X., Li, T., Yang, H., Lai, S., Xu, G., Li, J., Zhang, Y., Gu, Y., Wang, W., Combined berberine and probiotic treatment as an effective regimen for improving postprandial hyperlipidemia in type 2 diabetes patients: a double blinded placebo controlled randomized study, Gut microbes 14(1) (2022) 2003176.

[45]. Luo, J., Jiang, L., Gao, B., Chai, Y., Bao, Y., Comprehensive in silico analysis of the probiotics, and preparation of compound probiotics-Polygonatum sibiricum saponin with hypoglycemic properties, Food chemistry 404(Pt A) (2023) 134569.

[46]. Quinn-Bohmann, N., Wilmanski, T., Sarmiento, K.R., Levy, L., Lampe, J.W., Gurry, T., Rappaport, N., Ostrem, E.M., Venturelli, O.S., Diener, C., Gibbons, S.M., Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut, Nature microbiology 9(7) (2024) 1700-1712.