One Potential Strategy for Biofuel Production: Isoprene Biosynthesis in Chlamydomonas Reinhardtii

Research Article
Open access

One Potential Strategy for Biofuel Production: Isoprene Biosynthesis in Chlamydomonas Reinhardtii

Yiqun Zhou 1* , Kaiqi Liu 2
  • 1 Faculty of science, The University of Hong Kong, Hong Kong, HKG, China    
  • 2 BDA School of The High School Affiliated to Rebmin University of China, Beijing, 100176, China    
  • *corresponding author u3637553@connect.hku.hk
Published on 20 June 2025 | https://doi.org/10.54254/2753-8818/2025.24217
TNS Vol.116
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-80590-197-6
ISBN (Online): 978-1-80590-198-3

Abstract

World energy is facing multiple threats. On the one hand, non-renewable energy sources such as fossil energy, which account for a large proportion, are gradually depleting, but the demand is still high. On the other hand, most of the energy currently used, such as oil and coal, is directly related to climate change and air pollution. Renewable biosynthetic pathways currently account for a very small proportion of energy consumption and therefore have great potential for development. Isoprene has a wide range of uses and can be used as a target product for biosynthesis. The MEP pathway of Chlamydomonas reinhardtii UPN22 can be used to synthesize this terpene compound, and there is the possibility of further improving the synthesis efficiency through the combined effects of genetic engineering and the external environment. At this stage, the characteristics of the UPN22 strain may affect the collection of isoprene products. In addition, there is a lack of real data on the entire MEP pathway, and it is impossible to confirm how these strategies will affect the synthesis of isoprene.

Keywords:

isoprene, MEP pathway, metabolic engineering, Chlamydomonas Reinhardtii

Zhou,Y.;Liu,K. (2025). One Potential Strategy for Biofuel Production: Isoprene Biosynthesis in Chlamydomonas Reinhardtii. Theoretical and Natural Science,116,63-70.
Export citation

References

[1]. Ritchie, H., Rosado, P., and Roser, M. (2020). Energy Production and Consumption.

[2]. Perera, F. (2017). Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. International journal of environmental research and public health 15, 16. 10.3390/ijerph15010016.

[3]. Höök, M., and Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy policy 52, 797-809. 10.1016/j.enpol.2012.10.046.

[4]. Yolcan, O.O. (2023). World energy outlook and state of renewable energy: 10-Year evaluation. Innovation and Green Development 2, 100070. 10.1016/j.igd.2023.100070.

[5]. Getachew, D., Mulugeta, K., Gemechu, G., and Murugesan, K. (2020). Values and drawbacks of biofuel production from microalgae. Journal of Applied Biotechnology Reports 7, 1-6.

[6]. Malode, S.J., Prabhu, K.K., Mascarenhas, R.J., Shetti, N.P., and Aminabhavi, T.M. (2021). Recent advances and viability in biofuel production. Energy conversion and management. X 10, 100070. 10.1016/j.ecmx.2020.100070.

[7]. Quinn, J.C., and Davis, R. (2015). The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling. Bioresource technology 184, 444-452. 10.1016/j.biortech.2014.10.075.

[8]. Morais, A.R., Dworakowska, S., Reis, A., Gouveia, L., Matos, C.T., Bogdał, D., and Bogel-Łukasik, R. (2015). Chemical and biological-based isoprene production: Green metrics. Catalysis Today 239, 38-43.

[9]. Sharkey, T.D., Wiberley, A.E., and Donohue, A.R. (2008). Isoprene Emission from Plants: Why and How. Annals of botany 101, 5-18. 10.1093/aob/mcm240.

[10]. Yahya, R.Z., Wellman, G.B., Overmans, S., and Lauersen, K.J. (2023). Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii. Metabolic engineering communications 16, e00221-e00221. 10.1016/j.mec.2023.e00221.

[11]. Abdallah, M.N., Wellman, G.B., Overmans, S., and Lauersen, K.J. (2022). Combinatorial Engineering Enables Photoautotrophic Growth in High Cell Density Phosphite-Buffered Media to Support Engineered Chlamydomonas reinhardtii Bio-Production Concepts. Frontiers in microbiology 13, 885840-885840. 10.3389/fmicb.2022.885840.

[12]. Kropat, J., Hong‐Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini, M., Merchant, S.S., and Malasarn, D. (2011). A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. The Plant Journal 66, 770-780.

[13]. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6557, Isoprene. https://pubchem.ncbi.nlm.nih.gov/compound/Isoprene.

[14]. Weraduwage, S.M., Rasulov, B., Sahu, A., Niinemets, Ü., and Sharkey, T.D. (2022). Isoprene measurements to assess plant hydrocarbon emissions and the methylerythritol pathway. In pp. 211-237. 10.1016/bs.mie.2022.07.020.

[15]. Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., and Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric chemistry and physics 6, 3181-3210. 10.5194/acp-6-3181-2006.

[16]. Perez-Gil, J., Behrendorff, J., Douw, A., and Vickers, C.E. (2024). The methylerythritol phosphate pathway as an oxidative stress sense and response system. Nature communications 15, 5303-5314. 10.1038/s41467-024-49483-8.

[17]. Chaves, J.E., Rueda-Romero, P., Kirst, H., and Melis, A. (2017). Engineering Isoprene Synthase Expression and Activity in Cyanobacteria. ACS synthetic biology 6, 2281-2292. 10.1021/acssynbio.7b00214.

[18]. Zhao, Y., Yang, J., Qin, B., Li, Y., Sun, Y., Su, S., and Xian, M. (2011). Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Applied microbiology and biotechnology 90, 1915-1922. 10.1007/s00253-011-3199-1.

[19]. Keller, C.L., Walkling, C.J., Zhang, D.D., Baldwin, L.C., Austin, J.S., and Harvey, B.G. (2023). Designer Biosynthetic Jet Fuels Derived from Isoprene and α‑Olefins. ACS sustainable chemistry & engineering 11, 4030-4039. 10.1021/acssuschemeng.2c05297.

[20]. Rosenkoetter, K.E., Kennedy, C.R., Chirik, P.J., and Harvey, B.G. (2019). [4 + 4]-cycloaddition of isoprene for the production of high-performance bio-based jet fuel. Green chemistry : an international journal and green chemistry resource : GC 21, 5616-5623. 10.1039/c9gc02404b.

[21]. Ye, L., Lv, X., and Yu, H. (2016). Engineering microbes for isoprene production. Metabolic engineering 38, 125-138. 10.1016/j.ymben.2016.07.005.

[22]. Chaves, J.E., and Melis, A. (2018). Engineering isoprene synthesis in cyanobacteria. FEBS letters 592, 2059-2069. 10.1002/1873-3468.13052.

[23]. Vranová, E., Coman, D., and Gruissem, W. (2013). Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual review of plant biology 64, 665-700. 10.1146/annurev-arplant-050312-120116.

[24]. Huang, P.-W., Wang, L.-R., Geng, S.-S., Ye, C., Sun, X.-M., and Huang, H. (2021). Strategies for enhancing terpenoids accumulation in microalgae. Applied microbiology and biotechnology 105, 4919-4930. 10.1007/s00253-021-11368-x.

[25]. Weise, S.E., Li, Z., Sutter, A.E., Corrion, A., Banerjee, A., and Sharkey, T.D. (2013). Measuring dimethylallyl diphosphate available for isoprene synthesis. Analytical biochemistry 435, 27-34. 10.1016/j.ab.2012.11.031.

[26]. Davies, F.K., Jinkerson, R.E., and Posewitz, M.C. (2015). Toward a photosynthetic microbial platform for terpenoid engineering. Photosynthesis research 123, 265-284.

[27]. Lohr, M., Schwender, J., and Polle, J.E.W. (2012). Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Science 185-186, 9-22. https://doi.org/10.1016/j.plantsci.2011.07.018.

[28]. Liu, H., Wang, Y., Tang, Q., Kong, W., Chung, W.-J., and Lu, T. (2014). MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli. Microbial cell factories 13, 135-135. 10.1186/s12934-014-0135-y.

[29]. Yang, J., Xian, M., Su, S., Zhao, G., Nie, Q., Jiang, X., Zheng, Y., and Liu, W. (2012). Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. PloS one 7, e33509. 10.1371/journal.pone.0033509.

[30]. Sharkey, T.D., Gray, D.W., Pell, H.K., Breneman, S.R., and Topper, L. (2013). ISOPRENE SYNTHASE GENES FORM A MONOPHYLETIC CLADE OF ACYCLIC TERPENE SYNTHASES IN THE TPS-B TERPENE SYNTHASE FAMILY. Evolution 67, 1026-1040. 10.1111/evo.12013.

[31]. Abdallah, M., Wellman, G., Overmans, S., and Lauersen, K.J. (2023). Investigating the capacity for heterologous sesquiterpenoid production from sub-cellular compartments of Chlamydomonas reinhardtii.

[32]. Gutiérrez, S., Overmans, S., Wellman, G.B., Samaras, V.G., Oviedo, C., Gede, M., Szekely, G., and Lauersen, K.J. (2024). A synthetic biology and green bioprocess approach to recreate agarwood sesquiterpenoid mixtures. Green Chemistry 26, 2577-2591.

[33]. Scholz, M.J., Weiss, T.L., Jinkerson, R.E., Jing, J., Roth, R., Goodenough, U., Posewitz, M.C., and Gerken, H.G. (2014). Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryotic cell 13, 1450-1464.

[34]. Bellido-Pedraza, C.M., Torres, M.J., and Llamas, A. (2024). The Microalgae Chlamydomonas for Bioremediation and Bioproduct Production. Cells 13. 10.3390/cells13131137.

[35]. Perozeni, F., Pivato, M., Angelini, M., Maricchiolo, E., Pompa, A., and Ballottari, M. (2023). Towards microalga-based superfoods: heterologous expression of zeolin in Chlamydomonas reinhardtii. Frontiers in plant science 14, 1184064-1184064. 10.3389/fpls.2023.1184064.

[36]. Perozeni, F., Pivato, M., Angelini, M., Maricchiolo, E., Pompa, A., and Ballottari, M. (2023). Towards microalga-based superfoods: heterologous expression of zeolin in Chlamydomonas reinhardtii. Frontiers in plant science 14, 1184064-1184064. 10.3389/fpls.2023.1184064.

[37]. Barolo, L., Commault, A.S., Abbriano, R.M., Padula, M.P., Kim, M., Kuzhiumparambil, U., Ralph, P.J., and Pernice, M. (2022). Unassembled cell wall proteins form aggregates in the extracellular space of Chlamydomonas reinhardtii strain UVM4. Applied microbiology and biotechnology 106, 4145-4156. 10.1007/s00253-022-11960-9.

[38]. Pasquini, D., Gori, A., Ferrini, F., and Brunetti, C. (2021). An Improvement of SPME-Based Sampling Technique to Collect Volatile Organic Compounds from Quercus ilex at the Environmental Level. Metabolites 11, 388. 10.3390/metabo11060388.


Cite this article

Zhou,Y.;Liu,K. (2025). One Potential Strategy for Biofuel Production: Isoprene Biosynthesis in Chlamydomonas Reinhardtii. Theoretical and Natural Science,116,63-70.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Modern Medicine and Global Health

ISBN:978-1-80590-197-6(Print) / 978-1-80590-198-3(Online)
Editor:Sheiladevi Sukumaran
Conference website: https://2025.icmmgh.org/
Conference date: 20 January 2025
Series: Theoretical and Natural Science
Volume number: Vol.116
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Ritchie, H., Rosado, P., and Roser, M. (2020). Energy Production and Consumption.

[2]. Perera, F. (2017). Pollution from Fossil-Fuel Combustion is the Leading Environmental Threat to Global Pediatric Health and Equity: Solutions Exist. International journal of environmental research and public health 15, 16. 10.3390/ijerph15010016.

[3]. Höök, M., and Tang, X. (2013). Depletion of fossil fuels and anthropogenic climate change—A review. Energy policy 52, 797-809. 10.1016/j.enpol.2012.10.046.

[4]. Yolcan, O.O. (2023). World energy outlook and state of renewable energy: 10-Year evaluation. Innovation and Green Development 2, 100070. 10.1016/j.igd.2023.100070.

[5]. Getachew, D., Mulugeta, K., Gemechu, G., and Murugesan, K. (2020). Values and drawbacks of biofuel production from microalgae. Journal of Applied Biotechnology Reports 7, 1-6.

[6]. Malode, S.J., Prabhu, K.K., Mascarenhas, R.J., Shetti, N.P., and Aminabhavi, T.M. (2021). Recent advances and viability in biofuel production. Energy conversion and management. X 10, 100070. 10.1016/j.ecmx.2020.100070.

[7]. Quinn, J.C., and Davis, R. (2015). The potentials and challenges of algae based biofuels: A review of the techno-economic, life cycle, and resource assessment modeling. Bioresource technology 184, 444-452. 10.1016/j.biortech.2014.10.075.

[8]. Morais, A.R., Dworakowska, S., Reis, A., Gouveia, L., Matos, C.T., Bogdał, D., and Bogel-Łukasik, R. (2015). Chemical and biological-based isoprene production: Green metrics. Catalysis Today 239, 38-43.

[9]. Sharkey, T.D., Wiberley, A.E., and Donohue, A.R. (2008). Isoprene Emission from Plants: Why and How. Annals of botany 101, 5-18. 10.1093/aob/mcm240.

[10]. Yahya, R.Z., Wellman, G.B., Overmans, S., and Lauersen, K.J. (2023). Engineered production of isoprene from the model green microalga Chlamydomonas reinhardtii. Metabolic engineering communications 16, e00221-e00221. 10.1016/j.mec.2023.e00221.

[11]. Abdallah, M.N., Wellman, G.B., Overmans, S., and Lauersen, K.J. (2022). Combinatorial Engineering Enables Photoautotrophic Growth in High Cell Density Phosphite-Buffered Media to Support Engineered Chlamydomonas reinhardtii Bio-Production Concepts. Frontiers in microbiology 13, 885840-885840. 10.3389/fmicb.2022.885840.

[12]. Kropat, J., Hong‐Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini, M., Merchant, S.S., and Malasarn, D. (2011). A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. The Plant Journal 66, 770-780.

[13]. National Center for Biotechnology Information (2024). PubChem Compound Summary for CID 6557, Isoprene. https://pubchem.ncbi.nlm.nih.gov/compound/Isoprene.

[14]. Weraduwage, S.M., Rasulov, B., Sahu, A., Niinemets, Ü., and Sharkey, T.D. (2022). Isoprene measurements to assess plant hydrocarbon emissions and the methylerythritol pathway. In pp. 211-237. 10.1016/bs.mie.2022.07.020.

[15]. Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P.I., and Geron, C. (2006). Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmospheric chemistry and physics 6, 3181-3210. 10.5194/acp-6-3181-2006.

[16]. Perez-Gil, J., Behrendorff, J., Douw, A., and Vickers, C.E. (2024). The methylerythritol phosphate pathway as an oxidative stress sense and response system. Nature communications 15, 5303-5314. 10.1038/s41467-024-49483-8.

[17]. Chaves, J.E., Rueda-Romero, P., Kirst, H., and Melis, A. (2017). Engineering Isoprene Synthase Expression and Activity in Cyanobacteria. ACS synthetic biology 6, 2281-2292. 10.1021/acssynbio.7b00214.

[18]. Zhao, Y., Yang, J., Qin, B., Li, Y., Sun, Y., Su, S., and Xian, M. (2011). Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Applied microbiology and biotechnology 90, 1915-1922. 10.1007/s00253-011-3199-1.

[19]. Keller, C.L., Walkling, C.J., Zhang, D.D., Baldwin, L.C., Austin, J.S., and Harvey, B.G. (2023). Designer Biosynthetic Jet Fuels Derived from Isoprene and α‑Olefins. ACS sustainable chemistry & engineering 11, 4030-4039. 10.1021/acssuschemeng.2c05297.

[20]. Rosenkoetter, K.E., Kennedy, C.R., Chirik, P.J., and Harvey, B.G. (2019). [4 + 4]-cycloaddition of isoprene for the production of high-performance bio-based jet fuel. Green chemistry : an international journal and green chemistry resource : GC 21, 5616-5623. 10.1039/c9gc02404b.

[21]. Ye, L., Lv, X., and Yu, H. (2016). Engineering microbes for isoprene production. Metabolic engineering 38, 125-138. 10.1016/j.ymben.2016.07.005.

[22]. Chaves, J.E., and Melis, A. (2018). Engineering isoprene synthesis in cyanobacteria. FEBS letters 592, 2059-2069. 10.1002/1873-3468.13052.

[23]. Vranová, E., Coman, D., and Gruissem, W. (2013). Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual review of plant biology 64, 665-700. 10.1146/annurev-arplant-050312-120116.

[24]. Huang, P.-W., Wang, L.-R., Geng, S.-S., Ye, C., Sun, X.-M., and Huang, H. (2021). Strategies for enhancing terpenoids accumulation in microalgae. Applied microbiology and biotechnology 105, 4919-4930. 10.1007/s00253-021-11368-x.

[25]. Weise, S.E., Li, Z., Sutter, A.E., Corrion, A., Banerjee, A., and Sharkey, T.D. (2013). Measuring dimethylallyl diphosphate available for isoprene synthesis. Analytical biochemistry 435, 27-34. 10.1016/j.ab.2012.11.031.

[26]. Davies, F.K., Jinkerson, R.E., and Posewitz, M.C. (2015). Toward a photosynthetic microbial platform for terpenoid engineering. Photosynthesis research 123, 265-284.

[27]. Lohr, M., Schwender, J., and Polle, J.E.W. (2012). Isoprenoid biosynthesis in eukaryotic phototrophs: A spotlight on algae. Plant Science 185-186, 9-22. https://doi.org/10.1016/j.plantsci.2011.07.018.

[28]. Liu, H., Wang, Y., Tang, Q., Kong, W., Chung, W.-J., and Lu, T. (2014). MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli. Microbial cell factories 13, 135-135. 10.1186/s12934-014-0135-y.

[29]. Yang, J., Xian, M., Su, S., Zhao, G., Nie, Q., Jiang, X., Zheng, Y., and Liu, W. (2012). Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. PloS one 7, e33509. 10.1371/journal.pone.0033509.

[30]. Sharkey, T.D., Gray, D.W., Pell, H.K., Breneman, S.R., and Topper, L. (2013). ISOPRENE SYNTHASE GENES FORM A MONOPHYLETIC CLADE OF ACYCLIC TERPENE SYNTHASES IN THE TPS-B TERPENE SYNTHASE FAMILY. Evolution 67, 1026-1040. 10.1111/evo.12013.

[31]. Abdallah, M., Wellman, G., Overmans, S., and Lauersen, K.J. (2023). Investigating the capacity for heterologous sesquiterpenoid production from sub-cellular compartments of Chlamydomonas reinhardtii.

[32]. Gutiérrez, S., Overmans, S., Wellman, G.B., Samaras, V.G., Oviedo, C., Gede, M., Szekely, G., and Lauersen, K.J. (2024). A synthetic biology and green bioprocess approach to recreate agarwood sesquiterpenoid mixtures. Green Chemistry 26, 2577-2591.

[33]. Scholz, M.J., Weiss, T.L., Jinkerson, R.E., Jing, J., Roth, R., Goodenough, U., Posewitz, M.C., and Gerken, H.G. (2014). Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryotic cell 13, 1450-1464.

[34]. Bellido-Pedraza, C.M., Torres, M.J., and Llamas, A. (2024). The Microalgae Chlamydomonas for Bioremediation and Bioproduct Production. Cells 13. 10.3390/cells13131137.

[35]. Perozeni, F., Pivato, M., Angelini, M., Maricchiolo, E., Pompa, A., and Ballottari, M. (2023). Towards microalga-based superfoods: heterologous expression of zeolin in Chlamydomonas reinhardtii. Frontiers in plant science 14, 1184064-1184064. 10.3389/fpls.2023.1184064.

[36]. Perozeni, F., Pivato, M., Angelini, M., Maricchiolo, E., Pompa, A., and Ballottari, M. (2023). Towards microalga-based superfoods: heterologous expression of zeolin in Chlamydomonas reinhardtii. Frontiers in plant science 14, 1184064-1184064. 10.3389/fpls.2023.1184064.

[37]. Barolo, L., Commault, A.S., Abbriano, R.M., Padula, M.P., Kim, M., Kuzhiumparambil, U., Ralph, P.J., and Pernice, M. (2022). Unassembled cell wall proteins form aggregates in the extracellular space of Chlamydomonas reinhardtii strain UVM4. Applied microbiology and biotechnology 106, 4145-4156. 10.1007/s00253-022-11960-9.

[38]. Pasquini, D., Gori, A., Ferrini, F., and Brunetti, C. (2021). An Improvement of SPME-Based Sampling Technique to Collect Volatile Organic Compounds from Quercus ilex at the Environmental Level. Metabolites 11, 388. 10.3390/metabo11060388.