References
[1]. NASA. (n.d.). Dark Energy, dark matter. NASA. Retrieved November 30, 2022, from https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy
[2]. Bertone, G., & Hooper, D. (2018). History of dark matter. Reviews of Modern Physics, 90(4), 045002.
[3]. Lundmark, K. (1930). Über die Bestimmung der Entfernungen, Dimensionen, Massen und Dichtigkeit fur die nächstgelegenen anagalacktischen Sternsysteme. Meddelanden fran Lunds Astronomiska Observatorium Serie I, 125, 1-13.
[4]. Dark matter. CERN. (n.d.). Retrieved November 30, 2022, from https://home.cern/science/physics/dark-matter
[5]. Volders, L. M. J. S. (1959). Neutral hydrogen in M 33 and M 101. Bulletin of the Astronomical Institutes of the Netherlands, 14, 323.
[6]. Bosma, A. (1978). The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types (Doctoral dissertation, Rijksuniversiteit te Groningen.).
[7]. Rubin, V. C., Ford Jr, W. K., & Thonnard, N. (1978). Extended rotation curves of high-luminosity spiral galaxies. IV-Systematic dynamical properties, SA through SC. The Astrophysical Journal, 225, L107-L111.
[8]. Mario De Leo (CC BY-SA 4.0), adapted from Corbelli, E., &Salucci, P. 2000, MNRAS, 311, 44.
[9]. Vallée, J. P. (2005). The spiral arms and interarm separation of the Milky Way: An updated statistical study. The Astronomical Journal, 130(2), 569.
[10]. Clowe, D., Bradač, M., Gonzalez, A. H., Markevitch, M., Randall, S. W., Jones, C., & Zaritsky, D. (2006). A direct empirical proof of the existence of dark matter. The Astrophysical Journal, 648(2), L109.
[11]. Bertone, G., & Tait, T. M. (2018). A new era in the quest for dark matter. arXiv preprint arXiv:1810.01668.
[12]. Gunn, J. E., & Gott III, J. R. (1972). On the infall of matter into clusters of galaxies and some effects on their evolution. The Astrophysical Journal, 176, 1.
[13]. Navarro, J. F., Frenk, C. S., & White, S. D. (1997). A universal density profile from hierarchical clustering. The Astrophysical Journal, 490(2), 493.
[14]. Merritt, D., Graham, A. W., Moore, B., Diemand, J., & Terzić, B. (2006). Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models. The Astronomical Journal, 132(6), 2685.
[15]. Avila-Reese, V., Firmani, C., & Hernández, X. (1998). On the formation and evolution of disk galaxies: Cosmological initial conditions and the gravitational collapse. The Astrophysical Journal, 505(1), 37.
[16]. McGaugh, S. S., De Blok, W. J. G., Schombert, J. M., De Naray, R. K., & Kim, J. H. (2007). The rotation velocity attributable to dark matter at intermediate radii in disk galaxies. The Astrophysical Journal, 659(1), 149.
[17]. Zooming in on dark matter. Max-Planck-Gesellschaft. (2020, September 2). Retrieved November 30, 2022, from https://www.mpg.de/15312438/0831-ext0-064909-zooming-in-on-dark-matter
[18]. Gaitskell, R. J. (2004). Direct detection of dark matter. Annual Review of Nuclear and Particle Science, 54(1), 315-359.
[19]. Xiao, M., Xiao, X., Zhao, L., Cao, X., Chen, X., Chen, Y., ... & Zhu, Z. (2014). First dark matter search results from the PandaX-I experiment. Science China Physics, Mechanics & Astronomy, 57(11), 2024-2030.
[20]. Slatyer, T. R. (2018). Indirect detection of dark matter. Theoretical Advanced Study Institute in Elementary Particle Physics: anticipating the next discoveries in particle physics, 297-353.
[21]. Bertone, G. (Ed.). (2010). Particle dark matter: observations, models and searches. Cambridge University Press. pp.83-104.
[22]. Ellis, J., Flores, R. A., Freese, K., Ritz, S., Seckel, D., & Silk, J. (1988). Cosmic ray constraints on the annihilations of relic particles in the galactic halo. Physics Letters B, 214(3), 403-412.
[23]. Hooper, D. (2018). TASI lectures on indirect searches for dark matter. arXiv preprint arXiv:1812.02029.
[24]. Brüning, O., Burkhardt, H., & Myers, S. (2012). The large hadron collider. Progress in Particle and Nuclear Physics, 67(3), 705-734.
[25]. Evans, L. (2007). The large hadron collider. New Journal of Physics, 9(9), 335.
[26]. Herr, W., & Muratori, B. (2006). Concept of luminosity.
[27]. Myers, S., & Schnell, W. (1983). Preliminary performance estimates for a LEP proton collider (No. LHC-NOTE-1). SCAN-0008106.
[28]. Asner, A. M., Picasso, E., Baconnier, Y., Hilleret, N., Schmid, J., Schönbacher, H., Gobel, K., Weisse, E., Brandt, D., Poncet, A., Hagedorn, D., Vos, L., Henke, H., Garoby, R., Häbel, E., Evans, L. R., Bassetti, M., Fassò, A., Barbalat, O., … Laurent, J. M. (1990, January 29). A feasibility study of possible options. CERN Document Server. Retrieved October 20, 2022, from https://cdsweb.cern.ch/record/152775
[29]. Breaking new ground in the search for dark matter. CERN. (n.d.). Retrieved December 1, 2022, from https://home.cern/news/series/lhc-physics-ten/breaking-new-ground-search-dark-matter
[30]. Blinov, N., Krnjaic, G., & Tuckler, D. (2021). Characterizing dark matter signals with missing momentum experiments. Physical Review D, 103(3), 035030.
[31]. Kane, G., & Watson, S. (2008). Dark matter and LHC: What is the connection?. Modern Physics Letters A, 23(26), 2103-2123.
[32]. Aad, G., Abajyan, T., Abbott, B., Abdallah, J., Khalek, S. A., Abdelalim, A. A., ... & Bansil, H. S. (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716(1), 1-29.
[33]. CEPC Study Group. (2018). CEPC conceptual design report: Volume 1-accelerator. arXiv preprint arXiv:1809.00285.
[34]. CEPC Study Group. (2018). CEPC Conceptual Design Report: Volume 2-Physics \& Detector. arXiv preprint arXiv:1811.10545.
[35]. Djouadi, A., Maiani, L., Moreau, G., Polosa, A., Quevillon, J., \& Riquer, V. (2013). The post-Higgs MSSM scenario: habemus MSSM?. The European Physical Journal C, 73(12), 1-10.
[36]. Fan, J., Reece, M., \& Wang, L. T. (2015). Precision natural SUSY at CEPC, FCC-ee, and ILC. Journal of High Energy Physics, 2015(8), 1-30.
[37]. Cao, Q. H., Huang, F. P., Xie, K. P., \& Zhang, X. (2018). Testing the electroweak phase transition in scalar extension models at lepton colliders. Chinese Physics C, 42(2), 023103.
[38]. Cai, C., Yu, Z. H., \& Zhang, H. H. (2017). CEPC precision of electroweak oblique parameters and weakly interacting dark matter: The fermionic case. Nuclear Physics B, 921, 181-210.
[39]. Low, M., \& Wang, L. T. (2014). Neutralino dark matter at 14 TeV and 100 TeV. Journal of High Energy Physics, 2014(8), 1-29.
Cite this article
Yan,N. (2023). Review of dark matter and detect dark matter using collider. Theoretical and Natural Science,19,90-101.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 2nd International Conference on Computing Innovation and Applied Physics
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. NASA. (n.d.). Dark Energy, dark matter. NASA. Retrieved November 30, 2022, from https://science.nasa.gov/astrophysics/focus-areas/what-is-dark-energy
[2]. Bertone, G., & Hooper, D. (2018). History of dark matter. Reviews of Modern Physics, 90(4), 045002.
[3]. Lundmark, K. (1930). Über die Bestimmung der Entfernungen, Dimensionen, Massen und Dichtigkeit fur die nächstgelegenen anagalacktischen Sternsysteme. Meddelanden fran Lunds Astronomiska Observatorium Serie I, 125, 1-13.
[4]. Dark matter. CERN. (n.d.). Retrieved November 30, 2022, from https://home.cern/science/physics/dark-matter
[5]. Volders, L. M. J. S. (1959). Neutral hydrogen in M 33 and M 101. Bulletin of the Astronomical Institutes of the Netherlands, 14, 323.
[6]. Bosma, A. (1978). The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types (Doctoral dissertation, Rijksuniversiteit te Groningen.).
[7]. Rubin, V. C., Ford Jr, W. K., & Thonnard, N. (1978). Extended rotation curves of high-luminosity spiral galaxies. IV-Systematic dynamical properties, SA through SC. The Astrophysical Journal, 225, L107-L111.
[8]. Mario De Leo (CC BY-SA 4.0), adapted from Corbelli, E., &Salucci, P. 2000, MNRAS, 311, 44.
[9]. Vallée, J. P. (2005). The spiral arms and interarm separation of the Milky Way: An updated statistical study. The Astronomical Journal, 130(2), 569.
[10]. Clowe, D., Bradač, M., Gonzalez, A. H., Markevitch, M., Randall, S. W., Jones, C., & Zaritsky, D. (2006). A direct empirical proof of the existence of dark matter. The Astrophysical Journal, 648(2), L109.
[11]. Bertone, G., & Tait, T. M. (2018). A new era in the quest for dark matter. arXiv preprint arXiv:1810.01668.
[12]. Gunn, J. E., & Gott III, J. R. (1972). On the infall of matter into clusters of galaxies and some effects on their evolution. The Astrophysical Journal, 176, 1.
[13]. Navarro, J. F., Frenk, C. S., & White, S. D. (1997). A universal density profile from hierarchical clustering. The Astrophysical Journal, 490(2), 493.
[14]. Merritt, D., Graham, A. W., Moore, B., Diemand, J., & Terzić, B. (2006). Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models. The Astronomical Journal, 132(6), 2685.
[15]. Avila-Reese, V., Firmani, C., & Hernández, X. (1998). On the formation and evolution of disk galaxies: Cosmological initial conditions and the gravitational collapse. The Astrophysical Journal, 505(1), 37.
[16]. McGaugh, S. S., De Blok, W. J. G., Schombert, J. M., De Naray, R. K., & Kim, J. H. (2007). The rotation velocity attributable to dark matter at intermediate radii in disk galaxies. The Astrophysical Journal, 659(1), 149.
[17]. Zooming in on dark matter. Max-Planck-Gesellschaft. (2020, September 2). Retrieved November 30, 2022, from https://www.mpg.de/15312438/0831-ext0-064909-zooming-in-on-dark-matter
[18]. Gaitskell, R. J. (2004). Direct detection of dark matter. Annual Review of Nuclear and Particle Science, 54(1), 315-359.
[19]. Xiao, M., Xiao, X., Zhao, L., Cao, X., Chen, X., Chen, Y., ... & Zhu, Z. (2014). First dark matter search results from the PandaX-I experiment. Science China Physics, Mechanics & Astronomy, 57(11), 2024-2030.
[20]. Slatyer, T. R. (2018). Indirect detection of dark matter. Theoretical Advanced Study Institute in Elementary Particle Physics: anticipating the next discoveries in particle physics, 297-353.
[21]. Bertone, G. (Ed.). (2010). Particle dark matter: observations, models and searches. Cambridge University Press. pp.83-104.
[22]. Ellis, J., Flores, R. A., Freese, K., Ritz, S., Seckel, D., & Silk, J. (1988). Cosmic ray constraints on the annihilations of relic particles in the galactic halo. Physics Letters B, 214(3), 403-412.
[23]. Hooper, D. (2018). TASI lectures on indirect searches for dark matter. arXiv preprint arXiv:1812.02029.
[24]. Brüning, O., Burkhardt, H., & Myers, S. (2012). The large hadron collider. Progress in Particle and Nuclear Physics, 67(3), 705-734.
[25]. Evans, L. (2007). The large hadron collider. New Journal of Physics, 9(9), 335.
[26]. Herr, W., & Muratori, B. (2006). Concept of luminosity.
[27]. Myers, S., & Schnell, W. (1983). Preliminary performance estimates for a LEP proton collider (No. LHC-NOTE-1). SCAN-0008106.
[28]. Asner, A. M., Picasso, E., Baconnier, Y., Hilleret, N., Schmid, J., Schönbacher, H., Gobel, K., Weisse, E., Brandt, D., Poncet, A., Hagedorn, D., Vos, L., Henke, H., Garoby, R., Häbel, E., Evans, L. R., Bassetti, M., Fassò, A., Barbalat, O., … Laurent, J. M. (1990, January 29). A feasibility study of possible options. CERN Document Server. Retrieved October 20, 2022, from https://cdsweb.cern.ch/record/152775
[29]. Breaking new ground in the search for dark matter. CERN. (n.d.). Retrieved December 1, 2022, from https://home.cern/news/series/lhc-physics-ten/breaking-new-ground-search-dark-matter
[30]. Blinov, N., Krnjaic, G., & Tuckler, D. (2021). Characterizing dark matter signals with missing momentum experiments. Physical Review D, 103(3), 035030.
[31]. Kane, G., & Watson, S. (2008). Dark matter and LHC: What is the connection?. Modern Physics Letters A, 23(26), 2103-2123.
[32]. Aad, G., Abajyan, T., Abbott, B., Abdallah, J., Khalek, S. A., Abdelalim, A. A., ... & Bansil, H. S. (2012). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716(1), 1-29.
[33]. CEPC Study Group. (2018). CEPC conceptual design report: Volume 1-accelerator. arXiv preprint arXiv:1809.00285.
[34]. CEPC Study Group. (2018). CEPC Conceptual Design Report: Volume 2-Physics \& Detector. arXiv preprint arXiv:1811.10545.
[35]. Djouadi, A., Maiani, L., Moreau, G., Polosa, A., Quevillon, J., \& Riquer, V. (2013). The post-Higgs MSSM scenario: habemus MSSM?. The European Physical Journal C, 73(12), 1-10.
[36]. Fan, J., Reece, M., \& Wang, L. T. (2015). Precision natural SUSY at CEPC, FCC-ee, and ILC. Journal of High Energy Physics, 2015(8), 1-30.
[37]. Cao, Q. H., Huang, F. P., Xie, K. P., \& Zhang, X. (2018). Testing the electroweak phase transition in scalar extension models at lepton colliders. Chinese Physics C, 42(2), 023103.
[38]. Cai, C., Yu, Z. H., \& Zhang, H. H. (2017). CEPC precision of electroweak oblique parameters and weakly interacting dark matter: The fermionic case. Nuclear Physics B, 921, 181-210.
[39]. Low, M., \& Wang, L. T. (2014). Neutralino dark matter at 14 TeV and 100 TeV. Journal of High Energy Physics, 2014(8), 1-29.