Application of precision medicine based on synthetic biology in the prevention and treatment of chronic diseases

Research Article
Open access

Application of precision medicine based on synthetic biology in the prevention and treatment of chronic diseases

Yutong Su 1*
  • 1 Beijing University of Chemical Technology    
  • *corresponding author 2803944723@qq.com
Published on 20 December 2023 | https://doi.org/10.54254/2753-8818/23/20231047
TNS Vol.23
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-83558-219-0
ISBN (Online): 978-1-83558-220-6

Abstract

Chronic non-communicable diseases have long been a significant factor affecting public health. If left unchecked, their protracted course and exorbitant treatment costs can inflict irreversible harm on patients' lives and finances. Chronic diseases often manifest insidiously and possess complex etiologies, posing substantial limitations to traditional treatment approaches, most of which merely provide symptomatic relief. Currently, synthetic biology has demonstrated substantial potential in the realms of chronic disease prevention, diagnosis, and treatment. This article focuses on the field of chronic disease prevention and treatment, using obesity, diabetes, hypertension, and inflammatory bowel disease as exemplars of typical chronic illnesses. It reviews advancements in research involving the application of synthetic biology techniques, including the construction of genetic circuits, gene control switches, and sensor systems, to provide a comprehensive overview of biologically-based methods for precise and controllable treatment of chronic diseases. The aim is to offer insights for the translation of fundamental synthetic biology research into clinical treatments for chronic diseases, thereby ushering in a new era of precision medicine guided by this principle in the field of chronic disease prevention and treatment.

Keywords:

Synthetic Biology, Precision Medicine, Chronic Diseases

Su,Y. (2023). Application of precision medicine based on synthetic biology in the prevention and treatment of chronic diseases. Theoretical and Natural Science,23,156-162.
Export citation

References

[1]. Jin, X., Liu, B., Liu, H., et al. (2023). Exploring the Mechanism of the Therapeutic Effects of Canglian Baitu Powder on Obesity Based on Gut Microbiota. *Chinese Journal of Traditional Chinese Medicine, 38*(08), 1732-1738. DOI: 10.16368/j.issn.1674-8999.2023.08.281.

[2]. Chinese Society of Overweight and Obesity Medicine and Nutrition. (2021). Chinese Guidelines for Medical Nutrition Therapy of Overweight and Obesity (2021). *Chinese Medical Frontiers Journal (Electronic Edition), 13*(11), 1-55.

[3]. Chinese Nutrition and Chronic Disease Status Report (2020). *Acta Nutrimenta Sinica, 42*(06), 521.

[4]. Wang, L., Chen, T., Wang, H., Wu, X., Cao, Q., Wen, K., Deng, K. Y., Xin, H. (2021). Engineered Bacteria of MG1363-pMG36e-GLP-1 Attenuated Obesity Induced by High Fat Diet in Mice. *Frontiers in Cellular and Infection Microbiology, 11*, 595575. doi: 10.3389/fcimb.2021.595575.

[5]. Bai, L., Gao, M., Cheng, X., Kang, G., Cao, X., Huang, H. (2020). Engineered Butyrate-Producing Bacteria Prevent High-Fat Diet-Induced Obesity in Mice. *Microbial Cell Factories, 19*(1), 94. doi: 10.1186/s12934-020-01350-z.

[6]. Senthivinayagam, S., Serbulea, V., Upchurch, C. M., Polanowska-Grabowska, R., Mendu, S. K., Sahu, S., Jayaguru, P., Aylor, K. W., Chordia, M. D., Steinberg, L., Oberholtzer, N., Uchiyama, S., Inada, N., Lorenz, U. M., Harris, T. E., Keller, S. R., Meher, A. K., Kadl, A., Desai, B. N., Kundu, B. K., Leitinger, N. (2021). Adaptive Thermogenesis in Brown Adipose Tissue Involves Activation of Pannexin-1 Channels. *Molecular Metabolism, 44*, 101130. doi: 10.1016/j.molmet.2020.101130.

[7]. Wang, C. H., Lundh, M., Fu, A., Kriszt, R., Huang, T. L., Lynes, M. D., Leiria, L. O., Shamsi, F., Darcy, J., Greenwood, B. P., Narain, N. R., Tolstikov, V., Smith, K. L., Emanuelli, B., Chang, Y. T., Hagen, S., Danial, N. N., Kiebish, M. A., Tseng, Y. H. (2020). CRISPR-Engineered Human Brown-Like Adipocytes Prevent Diet-Induced Obesity and Ameliorate Metabolic Syndrome in Mice. *Science Translational Medicine, 12*(558), eaaz8664. doi: 10.1126/scitranslmed.aaz8664.

[8]. Han, C., Zhang, X., Pang, G., Zhang, Y., Pan, H., Li, L., Cui, M., Liu, B., Kang, R., Xue, X., Sun, T., Liu, J., Chang, J., Zhao, P., Wang, H. (2022). Hydrogel Microcapsules Containing Engineered Bacteria for Sustained Production and Release of Protein Drugs. *Biomaterials, 287*, 121619. doi: 10.1016/j.biomaterials.2022.121619.

[9]. Chen, C., Yu, G., Huang, Y., Cheng, W., Li, Y., Sun, Y., Ye, H., Liu, T. (2022). Genetic-Code-Expanded Cell-Based Therapy for Treating Diabetes in Mice. *Nature Chemical Biology, 18*(1), 47-55. doi: 10.1038/s41589-021-00899-z.

[10]. van Krieken, P. P., Voznesenskaya, A., Dicker, A., Xiong, Y., Park, J. H., Lee, J. I., Ilegems, E., Berggren, P. O. (2019). Translational Assessment of a Genetic Engineering Methodology to Improve Islet Function for Transplantation. *EBioMedicine, 45*, 529-541. doi: 10.1016/j.ebiom.2019.06.045.

[11]. Yin, J., Yang, L., Mou, L., Dong, K., Jiang, J., Xue, S., Xu, Y., Wang, X., Lu, Y., Ye, H. (2019). A Green Tea-Triggered Genetic Control System for Treating Diabetes in Mice and Monkeys. *Science Translational Medicine, 11*(515), eaav8826. doi: 10.1126/scitranslmed.aav8826.

[12]. Bojar, D., Scheller, L., Hamri, G. C., Xie, M., Fussenegger, M. (2018). Caffeine-Inducible Gene Switches Controlling Experimental Diabetes. *Nature Communications, 9*(1), 2318. doi: 10.1038/s41467-018-04744-1.

[13]. Li, C. Y., Wu, T., Zhao, X. J., Yu, C. P., Wang, Z. X., Zhou, X. F., Li, S. N., Li, J. D. (2023). A Glucose-Blue Light AND Gate-Controlled Chemi-Optogenetic Cell-Implanted Therapy for Treating Type-1 Diabetes in Mice. *Frontiers in Bioengineering and Biotechnology, 11*, 1052607. doi: 10.3389/fbioe.2023.1052607.

[14]. Wu, X., Shao, J. W., Ye, H. F. (2019). Precise Design and Disease Diagnosis and Treatment of Functional Cells Driven by Synthetic Biology. *Biological Industry Technology, (01), 41-54.

[15]. Ye, H., Daoud-El Baba, M., Peng, R. W., Fussenegger, M. (2011). A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice. *Science, 332*(6037), 1565-1568. doi: 10.1126/science.1203535.

[16]. Yu, G., Zhang, M., Gao, L., Zhou, Y., Qiao, L., Yin, J., Wang, Y., Zhou, J., Ye, H. (2022). Far-Red Light-Activated Human Islet-Like Designer Cells Enable Sustained Fine-Tuned Secretion of Insulin for Glucose Control. *Molecular Therapy, 30*(1), 341-354. doi: 10.1016/j.ymthe.2021.09.004.

[17]. Yang, G., Jiang, Y., Yang, W., Du, F., Yao, Y., Shi, C., Wang, C. (2015). Effective Treatment of Hypertension by Recombinant Lactobacillus plantarum Expressing Angiotensin-Converting Enzyme Inhibitory Peptide. *Microbial Cell Factories, 14*, 202. doi: 10.1186/s12934-015-0394-2.

[18]. Rössger, K., Charpin-El Hamri, G., Fussenegger, M. (2013). Reward-Based Hypertension Control by a Synthetic Brain-Dopamine Interface. *Proceedings of the National Academy of Sciences of the United States of America, 110*(45), 18150-18155. doi: 10.1073/pnas.1312414110.

[19]. Riglar, D. T., Giessen, T. W., Baym, M., Kerns, S. J., Niederhuber, M. J., Bronson, R. T., Kotula, J. W., Gerber, G. K., Way, J. C., Silver, P. A. (2017). Engineered Bacteria Can Function in the Mammalian Gut Long-Term as Live Diagnostics of Inflammation. *Nature Biotechnology, 35*(7), 653-658. doi: 10.1038/nbt.3879.

[20]. Zou, Z. P., Du, Y., Fang, T. T., Zhou, Y., Ye, B. C. (2022). Biomarker-Responsive Engineered Probiotic Diagnoses, Records, and Ameliorates Inflammatory Bowel Disease in Mice. *Cell Host & Microbe, 31*(2), 199-212.e5. doi: 10.1016/j.chom.2022.12.004.

[21]. Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., Fiers, W., Remaut, E. (2000). Treatment of Murine Colitis by Lactococcus lactis Secreting Interleukin-10. *Science, 289*(5483), 1352-1355. doi: 10.1126/science.289.5483.1352.

[22]. Praveschotinunt, P., Duraj-Thatte, A. M., Gelfat, I., Bahl, F., Chou, D. B., Joshi, N. S. (2019). Engineered E. coli Nissle 1917 for the Delivery of Matrix-Tethered Therapeutic Domains to the Gut. *Nature Communications, 10*(1), 5580. doi: 10.1038/s41467-019-13336-6.

[23]. Zhou, J., Li, M., Chen, Q., Li, X., Chen, L., Dong, Z., Zhu, W., Yang, Y., Liu, Z., Chen, Q. (2022). Programmable Probiotics Modulate Inflammation and Gut Microbiota for Inflammatory Bowel Disease Treatment After Effective Oral Delivery. *Nature Communications, 13*(1), 3432. doi: 10.1038/s41467-022-31171-0.

[24]. Lynch, J. P., González-Prieto, C., Reeves, A. Z., Bae, S., Powale, U., Godbole, N. P., Tremblay, J. M., Schmidt, F. I., Ploegh, H. L., Kansra, V., Glickman, J. N., Leong, J. M., Shoemaker, C. B., Garrett, W. S., Lesser, C. F. (2023). Engineered Escherichia coli for the In Situ Secretion of Therapeutic Nanobodies in the Gut. *Cell Host & Microbe, 31*(4), 634-649.e8. doi: 10.1016/j.chom.2023.03.007.


Cite this article

Su,Y. (2023). Application of precision medicine based on synthetic biology in the prevention and treatment of chronic diseases. Theoretical and Natural Science,23,156-162.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Biological Engineering and Medical Science

ISBN:978-1-83558-219-0(Print) / 978-1-83558-220-6(Online)
Editor:Alan Wang
Conference website: https://www.icbiomed.org/
Conference date: 2 September 2023
Series: Theoretical and Natural Science
Volume number: Vol.23
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Jin, X., Liu, B., Liu, H., et al. (2023). Exploring the Mechanism of the Therapeutic Effects of Canglian Baitu Powder on Obesity Based on Gut Microbiota. *Chinese Journal of Traditional Chinese Medicine, 38*(08), 1732-1738. DOI: 10.16368/j.issn.1674-8999.2023.08.281.

[2]. Chinese Society of Overweight and Obesity Medicine and Nutrition. (2021). Chinese Guidelines for Medical Nutrition Therapy of Overweight and Obesity (2021). *Chinese Medical Frontiers Journal (Electronic Edition), 13*(11), 1-55.

[3]. Chinese Nutrition and Chronic Disease Status Report (2020). *Acta Nutrimenta Sinica, 42*(06), 521.

[4]. Wang, L., Chen, T., Wang, H., Wu, X., Cao, Q., Wen, K., Deng, K. Y., Xin, H. (2021). Engineered Bacteria of MG1363-pMG36e-GLP-1 Attenuated Obesity Induced by High Fat Diet in Mice. *Frontiers in Cellular and Infection Microbiology, 11*, 595575. doi: 10.3389/fcimb.2021.595575.

[5]. Bai, L., Gao, M., Cheng, X., Kang, G., Cao, X., Huang, H. (2020). Engineered Butyrate-Producing Bacteria Prevent High-Fat Diet-Induced Obesity in Mice. *Microbial Cell Factories, 19*(1), 94. doi: 10.1186/s12934-020-01350-z.

[6]. Senthivinayagam, S., Serbulea, V., Upchurch, C. M., Polanowska-Grabowska, R., Mendu, S. K., Sahu, S., Jayaguru, P., Aylor, K. W., Chordia, M. D., Steinberg, L., Oberholtzer, N., Uchiyama, S., Inada, N., Lorenz, U. M., Harris, T. E., Keller, S. R., Meher, A. K., Kadl, A., Desai, B. N., Kundu, B. K., Leitinger, N. (2021). Adaptive Thermogenesis in Brown Adipose Tissue Involves Activation of Pannexin-1 Channels. *Molecular Metabolism, 44*, 101130. doi: 10.1016/j.molmet.2020.101130.

[7]. Wang, C. H., Lundh, M., Fu, A., Kriszt, R., Huang, T. L., Lynes, M. D., Leiria, L. O., Shamsi, F., Darcy, J., Greenwood, B. P., Narain, N. R., Tolstikov, V., Smith, K. L., Emanuelli, B., Chang, Y. T., Hagen, S., Danial, N. N., Kiebish, M. A., Tseng, Y. H. (2020). CRISPR-Engineered Human Brown-Like Adipocytes Prevent Diet-Induced Obesity and Ameliorate Metabolic Syndrome in Mice. *Science Translational Medicine, 12*(558), eaaz8664. doi: 10.1126/scitranslmed.aaz8664.

[8]. Han, C., Zhang, X., Pang, G., Zhang, Y., Pan, H., Li, L., Cui, M., Liu, B., Kang, R., Xue, X., Sun, T., Liu, J., Chang, J., Zhao, P., Wang, H. (2022). Hydrogel Microcapsules Containing Engineered Bacteria for Sustained Production and Release of Protein Drugs. *Biomaterials, 287*, 121619. doi: 10.1016/j.biomaterials.2022.121619.

[9]. Chen, C., Yu, G., Huang, Y., Cheng, W., Li, Y., Sun, Y., Ye, H., Liu, T. (2022). Genetic-Code-Expanded Cell-Based Therapy for Treating Diabetes in Mice. *Nature Chemical Biology, 18*(1), 47-55. doi: 10.1038/s41589-021-00899-z.

[10]. van Krieken, P. P., Voznesenskaya, A., Dicker, A., Xiong, Y., Park, J. H., Lee, J. I., Ilegems, E., Berggren, P. O. (2019). Translational Assessment of a Genetic Engineering Methodology to Improve Islet Function for Transplantation. *EBioMedicine, 45*, 529-541. doi: 10.1016/j.ebiom.2019.06.045.

[11]. Yin, J., Yang, L., Mou, L., Dong, K., Jiang, J., Xue, S., Xu, Y., Wang, X., Lu, Y., Ye, H. (2019). A Green Tea-Triggered Genetic Control System for Treating Diabetes in Mice and Monkeys. *Science Translational Medicine, 11*(515), eaav8826. doi: 10.1126/scitranslmed.aav8826.

[12]. Bojar, D., Scheller, L., Hamri, G. C., Xie, M., Fussenegger, M. (2018). Caffeine-Inducible Gene Switches Controlling Experimental Diabetes. *Nature Communications, 9*(1), 2318. doi: 10.1038/s41467-018-04744-1.

[13]. Li, C. Y., Wu, T., Zhao, X. J., Yu, C. P., Wang, Z. X., Zhou, X. F., Li, S. N., Li, J. D. (2023). A Glucose-Blue Light AND Gate-Controlled Chemi-Optogenetic Cell-Implanted Therapy for Treating Type-1 Diabetes in Mice. *Frontiers in Bioengineering and Biotechnology, 11*, 1052607. doi: 10.3389/fbioe.2023.1052607.

[14]. Wu, X., Shao, J. W., Ye, H. F. (2019). Precise Design and Disease Diagnosis and Treatment of Functional Cells Driven by Synthetic Biology. *Biological Industry Technology, (01), 41-54.

[15]. Ye, H., Daoud-El Baba, M., Peng, R. W., Fussenegger, M. (2011). A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice. *Science, 332*(6037), 1565-1568. doi: 10.1126/science.1203535.

[16]. Yu, G., Zhang, M., Gao, L., Zhou, Y., Qiao, L., Yin, J., Wang, Y., Zhou, J., Ye, H. (2022). Far-Red Light-Activated Human Islet-Like Designer Cells Enable Sustained Fine-Tuned Secretion of Insulin for Glucose Control. *Molecular Therapy, 30*(1), 341-354. doi: 10.1016/j.ymthe.2021.09.004.

[17]. Yang, G., Jiang, Y., Yang, W., Du, F., Yao, Y., Shi, C., Wang, C. (2015). Effective Treatment of Hypertension by Recombinant Lactobacillus plantarum Expressing Angiotensin-Converting Enzyme Inhibitory Peptide. *Microbial Cell Factories, 14*, 202. doi: 10.1186/s12934-015-0394-2.

[18]. Rössger, K., Charpin-El Hamri, G., Fussenegger, M. (2013). Reward-Based Hypertension Control by a Synthetic Brain-Dopamine Interface. *Proceedings of the National Academy of Sciences of the United States of America, 110*(45), 18150-18155. doi: 10.1073/pnas.1312414110.

[19]. Riglar, D. T., Giessen, T. W., Baym, M., Kerns, S. J., Niederhuber, M. J., Bronson, R. T., Kotula, J. W., Gerber, G. K., Way, J. C., Silver, P. A. (2017). Engineered Bacteria Can Function in the Mammalian Gut Long-Term as Live Diagnostics of Inflammation. *Nature Biotechnology, 35*(7), 653-658. doi: 10.1038/nbt.3879.

[20]. Zou, Z. P., Du, Y., Fang, T. T., Zhou, Y., Ye, B. C. (2022). Biomarker-Responsive Engineered Probiotic Diagnoses, Records, and Ameliorates Inflammatory Bowel Disease in Mice. *Cell Host & Microbe, 31*(2), 199-212.e5. doi: 10.1016/j.chom.2022.12.004.

[21]. Steidler, L., Hans, W., Schotte, L., Neirynck, S., Obermeier, F., Falk, W., Fiers, W., Remaut, E. (2000). Treatment of Murine Colitis by Lactococcus lactis Secreting Interleukin-10. *Science, 289*(5483), 1352-1355. doi: 10.1126/science.289.5483.1352.

[22]. Praveschotinunt, P., Duraj-Thatte, A. M., Gelfat, I., Bahl, F., Chou, D. B., Joshi, N. S. (2019). Engineered E. coli Nissle 1917 for the Delivery of Matrix-Tethered Therapeutic Domains to the Gut. *Nature Communications, 10*(1), 5580. doi: 10.1038/s41467-019-13336-6.

[23]. Zhou, J., Li, M., Chen, Q., Li, X., Chen, L., Dong, Z., Zhu, W., Yang, Y., Liu, Z., Chen, Q. (2022). Programmable Probiotics Modulate Inflammation and Gut Microbiota for Inflammatory Bowel Disease Treatment After Effective Oral Delivery. *Nature Communications, 13*(1), 3432. doi: 10.1038/s41467-022-31171-0.

[24]. Lynch, J. P., González-Prieto, C., Reeves, A. Z., Bae, S., Powale, U., Godbole, N. P., Tremblay, J. M., Schmidt, F. I., Ploegh, H. L., Kansra, V., Glickman, J. N., Leong, J. M., Shoemaker, C. B., Garrett, W. S., Lesser, C. F. (2023). Engineered Escherichia coli for the In Situ Secretion of Therapeutic Nanobodies in the Gut. *Cell Host & Microbe, 31*(4), 634-649.e8. doi: 10.1016/j.chom.2023.03.007.