Analysis of the role of clock genes in the sleep-wake cycle and other biological processes

Research Article
Open access

Analysis of the role of clock genes in the sleep-wake cycle and other biological processes

Jiayang Xu 1*
  • 1 Zhejiang University    
  • *corresponding author Jiayang.21@intl.zju.edu.cn
Published on 20 December 2023 | https://doi.org/10.54254/2753-8818/23/20231067
TNS Vol.23
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-83558-219-0
ISBN (Online): 978-1-83558-220-6

Abstract

Clock genes, forming the crux of the body's circadian system, underpin the molecular basis of circadian rhythms. These rhythms, following approximately 24-hour cycles, regulate an array of biological processes, enabling organisms to adjust to environmental shifts. The sleep-wake cycle, a fundamental manifestation of this, alongside crucial brain functions and basic physiological processes, demonstrates significant links to circadian rhythms. This paper explores the interplay between clock genes and the sleep-wake cycle, illustrating that these genes modulate the cycle by managing associated hormones and neurotransmitters. Conversely, disruptions to the sleep-wake cycle influence the expressions of clock genes. Furthermore, the bidirectional relationships between these genes and other processes are also examined. Clock genes exert direct or indirect influence on vital life processes, which in turn modulate clock gene expression in various ways. Ultimately, the paper concludes with an in-depth understanding of the underlying mechanisms and identifies potential avenues for future research. These insights significantly contribute to the knowledge of the genetic basis of circadian rhythms and their potential clinical implications.

Keywords:

clock genes, sleep-wake cycle, biological process

Xu,J. (2023). Analysis of the role of clock genes in the sleep-wake cycle and other biological processes. Theoretical and Natural Science,23,230-236.
Export citation

References

[1]. Andretic, R., Franken, P., & Tafti, M. (2008). Genetics of Sleep. Annual Review of Genetics, 42(1), 361–388. https://doi.org/10.1146/annurev.genet.42.110807.091541

[2]. Bolsius, Y. G., Zurbriggen, M. D., Kim, J. K., Kas, M. J., Meerlo, P., Aton, S. J., & Havekes, R. (2021). The role of clock genes in sleep, stress and memory. Biochemical Pharmacology, 191, 114493. https://doi.org/10.1016/j.bcp.2021.114493

[3]. Cedernaes, J., Schiöth, H. B., & Benedict, C. (2015). Determinants of shortened, disrupted, and mistimed sleep and associated metabolic health consequences in healthy humans. Diabetes, 64(4), 1073–1080. https://doi.org/10.2337/db14-1475

[4]. Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), Article 7. https://doi.org/10.1038/nrendo.2009.106

[5]. Cox, K. H., & Takahashi, J. S. (2019). Circadian clock genes and the transcriptional architecture of the clock mechanism. Journal of Molecular Endocrinology, 63(4), R93–R102. https://doi.org/10.1530/JME-19-0153

[6]. Curtis, A. M., Bellet, M. M., Sassone-Corsi, P., & O’Neill, L. A. J. (2014). Circadian clock proteins and immunity. Immunity, 40(2), 178–186. https://doi.org/10.1016/j.immuni. 2014.02.002

[7]. Gerstner, J. R., Lyons, L. C., Wright, K. P., Loh, D. H., Rawashdeh, O., Eckel-Mahan, K. L., & Roman, G. W. (2009). Cycling behavior and memory formation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(41), 12824–12830. https://doi.org/10.1523/JNEUROSCI.3353-09.2009

[8]. Huang, W., Ramsey, K. M., Marcheva, B., & Bass, J. (2011). Circadian rhythms, sleep, and metabolism. The Journal of Clinical Investigation, 121(6), 2133–2141. https://doi.org/ 10.1172/JCI46043

[9]. Hughes, A. T. L., & Piggins, H. D. (2014). Disruption of daily rhythms in gene expression: The importance of being synchronised. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 36(7), 644–648. https://doi.org/10.1002/bies.201400043

[10]. Johansson, C., Willeit, M., Smedh, C., Ekholm, J., Paunio, T., Kieseppä, T., Lichtermann, D., Praschak-Rieder, N., Neumeister, A., Nilsson, L.-G., Kasper, S., Peltonen, L., Adolfsson, R., Schalling, M., & Partonen, T. (2003). Circadian Clock-Related Polymorphisms in Seasonal Affective Disorder and their Relevance to Diurnal Preference. Neuropsychopharmacology, 28(4), Article 4. https://doi.org/10.1038/sj.npp.1300121

[11]. Labrecque, N., & Cermakian, N. (2015). Circadian Clocks in the Immune System. Journal of Biological Rhythms, 30(4), 277–290. https://doi.org/10.1177/0748730415577723

[12]. Möller-Levet, C. S., Archer, S. N., Bucca, G., Laing, E. E., Slak, A., Kabiljo, R., Lo, J. C. Y., Santhi, N., von Schantz, M., Smith, C. P., & Dijk, D.-J. (2013). Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proceedings of the National Academy of Sciences of the United States of America, 110(12), E1132-1141. https://doi.org/10.1073/pnas.1217154110

[13]. Murillo-Rodriguez, E., Arias-Carrion, O., Zavala-Garcia, A., Sarro-Ramirez, A., Huitron-Resendiz, S., & Arankowsky-Sandoval, G. (2012). Basic sleep mechanisms: An integrative review. Central Nervous System Agents in Medicinal Chemistry, 12(1), 38–54. https://doi.org/10.2174/187152412800229107

[14]. Nayak, S. K., Jegla, T., & Panda, S. (2007). Role of a novel photopigment, melanopsin, in behavioral adaptation to light. Cellular and Molecular Life Sciences, 64(2), 144–154. https://doi.org/10.1007/s00018-006-5581-1

[15]. Nepovimova, E., Janockova, J., Misik, J., Kubik, S., Stuchlik, A., Vales, K., Korabecny, J., Mezeiova, E., Dolezal, R., Soukup, O., Kobrlova, T., Pham, N. L., Nguyen, T. D., Konecny, J., & Kuca, K. (2019). Orexin supplementation in narcolepsy treatment: A review. Medicinal Research Reviews, 39(3), 961–975. https://doi.org/10.1002/med.21550

[16]. Panda, S. (2016). Circadian physiology of metabolism. Science (New York, N.Y.), 354(6315), 1008–1015. https://doi.org/10.1126/science.aah4967

[17]. Pavlova, M. (2017). Circadian Rhythm Sleep-Wake Disorders. Continuum (Minneapolis, Minn.), 23(4, Sleep Neurology), 1051–1063. https://doi.org/10.1212/CON.0000000000000499

[18]. Roenneberg, T., & Merrow, M. (2016). The Circadian Clock and Human Health. Current Biology: CB, 26(10), R432-443. https://doi.org/10.1016/j.cub.2016.04.011

[19]. Spencer, R. L., Chun, L. E., Hartsock, M. J., & Woodruff, E. R. (2018). Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Frontiers in Neuroendocrinology, 49, 52–71. https://doi.org/10.1016/j.yfrne.2017.12.005


Cite this article

Xu,J. (2023). Analysis of the role of clock genes in the sleep-wake cycle and other biological processes. Theoretical and Natural Science,23,230-236.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Biological Engineering and Medical Science

ISBN:978-1-83558-219-0(Print) / 978-1-83558-220-6(Online)
Editor:Alan Wang
Conference website: https://www.icbiomed.org/
Conference date: 2 September 2023
Series: Theoretical and Natural Science
Volume number: Vol.23
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. Andretic, R., Franken, P., & Tafti, M. (2008). Genetics of Sleep. Annual Review of Genetics, 42(1), 361–388. https://doi.org/10.1146/annurev.genet.42.110807.091541

[2]. Bolsius, Y. G., Zurbriggen, M. D., Kim, J. K., Kas, M. J., Meerlo, P., Aton, S. J., & Havekes, R. (2021). The role of clock genes in sleep, stress and memory. Biochemical Pharmacology, 191, 114493. https://doi.org/10.1016/j.bcp.2021.114493

[3]. Cedernaes, J., Schiöth, H. B., & Benedict, C. (2015). Determinants of shortened, disrupted, and mistimed sleep and associated metabolic health consequences in healthy humans. Diabetes, 64(4), 1073–1080. https://doi.org/10.2337/db14-1475

[4]. Chrousos, G. P. (2009). Stress and disorders of the stress system. Nature Reviews Endocrinology, 5(7), Article 7. https://doi.org/10.1038/nrendo.2009.106

[5]. Cox, K. H., & Takahashi, J. S. (2019). Circadian clock genes and the transcriptional architecture of the clock mechanism. Journal of Molecular Endocrinology, 63(4), R93–R102. https://doi.org/10.1530/JME-19-0153

[6]. Curtis, A. M., Bellet, M. M., Sassone-Corsi, P., & O’Neill, L. A. J. (2014). Circadian clock proteins and immunity. Immunity, 40(2), 178–186. https://doi.org/10.1016/j.immuni. 2014.02.002

[7]. Gerstner, J. R., Lyons, L. C., Wright, K. P., Loh, D. H., Rawashdeh, O., Eckel-Mahan, K. L., & Roman, G. W. (2009). Cycling behavior and memory formation. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(41), 12824–12830. https://doi.org/10.1523/JNEUROSCI.3353-09.2009

[8]. Huang, W., Ramsey, K. M., Marcheva, B., & Bass, J. (2011). Circadian rhythms, sleep, and metabolism. The Journal of Clinical Investigation, 121(6), 2133–2141. https://doi.org/ 10.1172/JCI46043

[9]. Hughes, A. T. L., & Piggins, H. D. (2014). Disruption of daily rhythms in gene expression: The importance of being synchronised. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 36(7), 644–648. https://doi.org/10.1002/bies.201400043

[10]. Johansson, C., Willeit, M., Smedh, C., Ekholm, J., Paunio, T., Kieseppä, T., Lichtermann, D., Praschak-Rieder, N., Neumeister, A., Nilsson, L.-G., Kasper, S., Peltonen, L., Adolfsson, R., Schalling, M., & Partonen, T. (2003). Circadian Clock-Related Polymorphisms in Seasonal Affective Disorder and their Relevance to Diurnal Preference. Neuropsychopharmacology, 28(4), Article 4. https://doi.org/10.1038/sj.npp.1300121

[11]. Labrecque, N., & Cermakian, N. (2015). Circadian Clocks in the Immune System. Journal of Biological Rhythms, 30(4), 277–290. https://doi.org/10.1177/0748730415577723

[12]. Möller-Levet, C. S., Archer, S. N., Bucca, G., Laing, E. E., Slak, A., Kabiljo, R., Lo, J. C. Y., Santhi, N., von Schantz, M., Smith, C. P., & Dijk, D.-J. (2013). Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proceedings of the National Academy of Sciences of the United States of America, 110(12), E1132-1141. https://doi.org/10.1073/pnas.1217154110

[13]. Murillo-Rodriguez, E., Arias-Carrion, O., Zavala-Garcia, A., Sarro-Ramirez, A., Huitron-Resendiz, S., & Arankowsky-Sandoval, G. (2012). Basic sleep mechanisms: An integrative review. Central Nervous System Agents in Medicinal Chemistry, 12(1), 38–54. https://doi.org/10.2174/187152412800229107

[14]. Nayak, S. K., Jegla, T., & Panda, S. (2007). Role of a novel photopigment, melanopsin, in behavioral adaptation to light. Cellular and Molecular Life Sciences, 64(2), 144–154. https://doi.org/10.1007/s00018-006-5581-1

[15]. Nepovimova, E., Janockova, J., Misik, J., Kubik, S., Stuchlik, A., Vales, K., Korabecny, J., Mezeiova, E., Dolezal, R., Soukup, O., Kobrlova, T., Pham, N. L., Nguyen, T. D., Konecny, J., & Kuca, K. (2019). Orexin supplementation in narcolepsy treatment: A review. Medicinal Research Reviews, 39(3), 961–975. https://doi.org/10.1002/med.21550

[16]. Panda, S. (2016). Circadian physiology of metabolism. Science (New York, N.Y.), 354(6315), 1008–1015. https://doi.org/10.1126/science.aah4967

[17]. Pavlova, M. (2017). Circadian Rhythm Sleep-Wake Disorders. Continuum (Minneapolis, Minn.), 23(4, Sleep Neurology), 1051–1063. https://doi.org/10.1212/CON.0000000000000499

[18]. Roenneberg, T., & Merrow, M. (2016). The Circadian Clock and Human Health. Current Biology: CB, 26(10), R432-443. https://doi.org/10.1016/j.cub.2016.04.011

[19]. Spencer, R. L., Chun, L. E., Hartsock, M. J., & Woodruff, E. R. (2018). Glucocorticoid hormones are both a major circadian signal and major stress signal: How this shared signal contributes to a dynamic relationship between the circadian and stress systems. Frontiers in Neuroendocrinology, 49, 52–71. https://doi.org/10.1016/j.yfrne.2017.12.005