References
[1]. L. Binan, A. Ajji, G. De Crescenzo, M. Jolicoeur. Approaches for neural tissue regeneration, Stem Cell Rev., 10 (1) (2014 Feb), pp. 44-59
[2]. Vasic V, Barth K, Schmidt MHH. Neurodegeneration and Neuro-Regeneration—Alzheimer’s Disease and Stem Cell Therapy. International Journal of Molecular Sciences. 2019; 20(17):4272. https://doi.org/10.3390/ijms20174272
[3]. Alipour, M.; Nabavi, S.M.; Arab, L.; Vosough, M.; Pakdaman, H.; Ehsani, E.; Shahpasand, K. Stem cell therapy in alzheimer’s disease: Possible benefits and limiting drawbacks. Mol. Biol. Rep. 2019, 46, 1425–1446. [Google Scholar] [CrossRef]
[4]. C.Y. Fong, K. Gauthaman, A. Bongso Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem., 111 (4) (2010 Nov 1), pp. 769-781
[5]. Richards, M.; Fong, C.-Y.; Chan, W.-K.; Wong, P.-C.; Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 2002, 20, 933.
[6]. L. Aubry, A. Bugi, N. Lefort, F. Rousseau, M. Peschanski, A.L. Perrier. Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and quinolinic acid-lesioned rats. Proc. Natl. Acad. Sci., 105 (43) (2008), pp. 16707-16712
[7]. Shimada, I.S.; LeComte, M.D.; Granger, J.C.; Quinlan, N.J.; Spees, J.L. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J. Neurosci. 2012, 32, 7926–7940.
[8]. M. Blurton-Jones, M. Kitazawa, H. Martinez-Coria, N.A. Castello, F.J. Muller, J. Loring, F.M. Laferla. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci., 106 (32) (2009), pp. 13594-13599
[9]. T. Duncan, M. Valenzuela. Alzheimer's disease, dementia, and stem cell therapy.Stem Cell Res Ther, 8 (1) (2017 May 12), p. 111
[10]. Z. Guo, L. Zhang, Z. Wu, Y. Chen, F. Wang, G. Chen. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and an Alzheimer's disease model. Cell Stem Cell, 14 (2) (2014 Feb 6), pp. 188-202
[11]. Liang, Y.; Ågren, L.; Lyczek, A.; Walczak, P.; Bulte, J.W. Neural progenitor cell survival in mouse brain can be improved by co-transplantation of helper cells expressing bfgf under doxycycline control. Exp. Neurol. 2013, 247, 73–79.
[12]. Nakaji-Hirabayashi, T.; Kato, K.; Iwata, H. In vivo study on the survival of neural stem cells transplanted into the rat brain with a collagen hydrogel that incorporates laminin-derived polypeptides. Bioconjugate Chem. 2013, 24, 1798–1804.
[13]. De Gioia, R. et al. (2020) Neural Stem Cell Transplantation for Neurodegenerative Diseases. International Journal of Molecular Sciences. [online]. 21 (9), MDPI AG, p.3103. Available from: http://dx.doi.org/10.3390/ijms21093103.
[14]. Miura K, Okada Y, Aoi T, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27:743-745.
[15]. Tsuji O, Miura K, Okada Y, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A. 2010;107(28): 12704-12709.
[16]. Zhou HY, Wu L, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009; 4(5):381-384.
[17]. Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol. 2015;62:581–9.
[18]. Ravaioli F, Bacalini MG, Franceschi C, Garagnani P. Age-related epigenetic derangement upon reprogramming and differentiation of cells from the elderly. Genes (Basel). 2018;9. https://doi.org/10.3390/genes9010039.
[19]. Roessler R, Smallwood SA, Veenvliet JV, Pechlivanoglou P, Peng SP, Chakrabarty K, et al. Detailed analysis of the genetic and epigenetic signatures of iPSCs-derived mesodiencephalic dopaminergic neurons. Stem Cell Rep. 2014;2:520–33.
[20]. Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009;4:141–54
[21]. Mertens J, Paquola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell. 2015;17:705–18.
[22]. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476:224–7.
[23]. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476:220–3.
[24]. Huh CJ, Zhang B, Victor MB, Dahiya S, Batista LF, Horvath S, et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. eLife. 2016;5:1–14.
[25]. Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng PY, et al. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron. 2014;84:311–23.
[26]. Corti S, Nizzardo M, Simone C, Falcone M, Donadoni C, Salani S, et al. Direct reprogramming of human astrocytes into neural stem cells and neurons. Exp Cell Res. 2012;318:1528–41.
[27]. Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, et al. Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol. 2013;31:434–40.
[28]. He M, Shi X, Yang M, Yang T, Li T, Chen J. Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Exp Neurol. 2019;311:15–32.
[29]. Lee JK, Schuchman EH, Jin HK, Bae J. Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells. 2012;30(7):1544–55.
[30]. L.A. Pfister, M. Papaloïzos, H.P. Merkle, B. Gander. Hydrogel nerve conduits produced from alginate/chitosan complexes. J. Biomed. Mater. Res. A, 80A (4) (2007), pp. 932-937
[31]. D. Macaya, M. Specto. Injectable hydrogel materials for spinal cord regeneration: a review. Biomed. Mater., 7 (1) (2012), Article 012001
[32]. X. Yi, G. Jin, M. Tian, W. Mao, J. Qin. Porous chitosan scaffold and NGF promote neuronal differentiation of neural stem cells in vitro. Neuro Endocrinol Lett., 32 (5) (2011), pp. 705-710
[33]. S. Pillay, V. Pillay, Y.E. Choonara, D. Naidoo, R.A. Khan, L.C. Toit, S.E. Iyuke.Design, biometric simulation, and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain.Int. J. Pharm., 382 (1–2) (2009), pp. 277-290
Cite this article
Wang,J. (2023). A review of neural regeneration therapy for Alzheimer's disease. Theoretical and Natural Science,24,151-156.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 3rd International Conference on Biological Engineering and Medical Science
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. L. Binan, A. Ajji, G. De Crescenzo, M. Jolicoeur. Approaches for neural tissue regeneration, Stem Cell Rev., 10 (1) (2014 Feb), pp. 44-59
[2]. Vasic V, Barth K, Schmidt MHH. Neurodegeneration and Neuro-Regeneration—Alzheimer’s Disease and Stem Cell Therapy. International Journal of Molecular Sciences. 2019; 20(17):4272. https://doi.org/10.3390/ijms20174272
[3]. Alipour, M.; Nabavi, S.M.; Arab, L.; Vosough, M.; Pakdaman, H.; Ehsani, E.; Shahpasand, K. Stem cell therapy in alzheimer’s disease: Possible benefits and limiting drawbacks. Mol. Biol. Rep. 2019, 46, 1425–1446. [Google Scholar] [CrossRef]
[4]. C.Y. Fong, K. Gauthaman, A. Bongso Teratomas from pluripotent stem cells: a clinical hurdle. J Cell Biochem., 111 (4) (2010 Nov 1), pp. 769-781
[5]. Richards, M.; Fong, C.-Y.; Chan, W.-K.; Wong, P.-C.; Bongso, A. Human feeders support prolonged undifferentiated growth of human inner cell masses and embryonic stem cells. Nat. Biotechnol. 2002, 20, 933.
[6]. L. Aubry, A. Bugi, N. Lefort, F. Rousseau, M. Peschanski, A.L. Perrier. Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and quinolinic acid-lesioned rats. Proc. Natl. Acad. Sci., 105 (43) (2008), pp. 16707-16712
[7]. Shimada, I.S.; LeComte, M.D.; Granger, J.C.; Quinlan, N.J.; Spees, J.L. Self-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke. J. Neurosci. 2012, 32, 7926–7940.
[8]. M. Blurton-Jones, M. Kitazawa, H. Martinez-Coria, N.A. Castello, F.J. Muller, J. Loring, F.M. Laferla. Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proc. Natl. Acad. Sci., 106 (32) (2009), pp. 13594-13599
[9]. T. Duncan, M. Valenzuela. Alzheimer's disease, dementia, and stem cell therapy.Stem Cell Res Ther, 8 (1) (2017 May 12), p. 111
[10]. Z. Guo, L. Zhang, Z. Wu, Y. Chen, F. Wang, G. Chen. In vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and an Alzheimer's disease model. Cell Stem Cell, 14 (2) (2014 Feb 6), pp. 188-202
[11]. Liang, Y.; Ågren, L.; Lyczek, A.; Walczak, P.; Bulte, J.W. Neural progenitor cell survival in mouse brain can be improved by co-transplantation of helper cells expressing bfgf under doxycycline control. Exp. Neurol. 2013, 247, 73–79.
[12]. Nakaji-Hirabayashi, T.; Kato, K.; Iwata, H. In vivo study on the survival of neural stem cells transplanted into the rat brain with a collagen hydrogel that incorporates laminin-derived polypeptides. Bioconjugate Chem. 2013, 24, 1798–1804.
[13]. De Gioia, R. et al. (2020) Neural Stem Cell Transplantation for Neurodegenerative Diseases. International Journal of Molecular Sciences. [online]. 21 (9), MDPI AG, p.3103. Available from: http://dx.doi.org/10.3390/ijms21093103.
[14]. Miura K, Okada Y, Aoi T, et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol. 2009;27:743-745.
[15]. Tsuji O, Miura K, Okada Y, et al. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc Natl Acad Sci U S A. 2010;107(28): 12704-12709.
[16]. Zhou HY, Wu L, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009; 4(5):381-384.
[17]. Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, et al. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol. 2015;62:581–9.
[18]. Ravaioli F, Bacalini MG, Franceschi C, Garagnani P. Age-related epigenetic derangement upon reprogramming and differentiation of cells from the elderly. Genes (Basel). 2018;9. https://doi.org/10.3390/genes9010039.
[19]. Roessler R, Smallwood SA, Veenvliet JV, Pechlivanoglou P, Peng SP, Chakrabarty K, et al. Detailed analysis of the genetic and epigenetic signatures of iPSCs-derived mesodiencephalic dopaminergic neurons. Stem Cell Rep. 2014;2:520–33.
[20]. Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell. 2009;4:141–54
[21]. Mertens J, Paquola ACM, Ku M, Hatch E, Böhnke L, Ladjevardi S, et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell. 2015;17:705–18.
[22]. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, et al. Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature. 2011;476:224–7.
[23]. Pang ZP, Yang N, Vierbuchen T, Ostermeier A, Fuentes DR, Yang TQ, et al. Induction of human neuronal cells by defined transcription factors. Nature. 2011;476:220–3.
[24]. Huh CJ, Zhang B, Victor MB, Dahiya S, Batista LF, Horvath S, et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. eLife. 2016;5:1–14.
[25]. Victor MB, Richner M, Hermanstyne TO, Ransdell JL, Sobieski C, Deng PY, et al. Generation of human striatal neurons by microRNA-dependent direct conversion of fibroblasts. Neuron. 2014;84:311–23.
[26]. Corti S, Nizzardo M, Simone C, Falcone M, Donadoni C, Salani S, et al. Direct reprogramming of human astrocytes into neural stem cells and neurons. Exp Cell Res. 2012;318:1528–41.
[27]. Yang N, Zuchero JB, Ahlenius H, Marro S, Ng YH, Vierbuchen T, et al. Generation of oligodendroglial cells by direct lineage conversion. Nat Biotechnol. 2013;31:434–40.
[28]. He M, Shi X, Yang M, Yang T, Li T, Chen J. Mesenchymal stem cells-derived IL-6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic-ischemic brain damage. Exp Neurol. 2019;311:15–32.
[29]. Lee JK, Schuchman EH, Jin HK, Bae J. Soluble CCL5 derived from bone marrow-derived mesenchymal stem cells and activated by amyloid β ameliorates Alzheimer’s disease in mice by recruiting bone marrow-induced microglia immune responses. Stem Cells. 2012;30(7):1544–55.
[30]. L.A. Pfister, M. Papaloïzos, H.P. Merkle, B. Gander. Hydrogel nerve conduits produced from alginate/chitosan complexes. J. Biomed. Mater. Res. A, 80A (4) (2007), pp. 932-937
[31]. D. Macaya, M. Specto. Injectable hydrogel materials for spinal cord regeneration: a review. Biomed. Mater., 7 (1) (2012), Article 012001
[32]. X. Yi, G. Jin, M. Tian, W. Mao, J. Qin. Porous chitosan scaffold and NGF promote neuronal differentiation of neural stem cells in vitro. Neuro Endocrinol Lett., 32 (5) (2011), pp. 705-710
[33]. S. Pillay, V. Pillay, Y.E. Choonara, D. Naidoo, R.A. Khan, L.C. Toit, S.E. Iyuke.Design, biometric simulation, and optimization of a nano-enabled scaffold device for enhanced delivery of dopamine to the brain.Int. J. Pharm., 382 (1–2) (2009), pp. 277-290