Next generation armored CAR-T cells with a drug inducible cytokine circuit

Research Article
Open access

Next generation armored CAR-T cells with a drug inducible cytokine circuit

David Drew 1 , Xinyan Li 2* , Michael Su 3 , Qingmei Wang 4
  • 1 University of Houston    
  • 2 St. Mildred’s Lightbourn School    
  • 3 McMaster University    
  • 4 Worcester Academy    
  • *corresponding author lisali3297@gmail.com
Published on 20 December 2023 | https://doi.org/10.54254/2753-8818/24/20231150
TNS Vol.24
ISSN (Print): 2753-8826
ISSN (Online): 2753-8818
ISBN (Print): 978-1-83558-221-3
ISBN (Online): 978-1-83558-222-0

Abstract

Immunotherapies which direct the body’s own immune system against tumors are a safer and more efficacious alternative to other types of cancer treatments. Chimeric Antigen Receptor or CAR T cell therapy has emerged at the forefront of contemporary cancer immunotherapy research and is highly specific for a wide range of cancer types, resulting in improved patient outcomes. Early generations of CAR T cells were ineffective and failed to proliferate due to lack of costimulatory signals and immunosuppression within the tumor microenvironment (TME), but later generations of “armored” CAR T cells added costimulatory receptor domains and constitutive expression of stimulatory immunocytokines to ameliorate this. However, increased aggressiveness in T cells comes with issues such as off-site toxicity, fails to address relapse due to immune evasion, and combined with the prohibitive cost of engineering CAR T cells limit the efficacy of the treatment. Next generation CAR T-cells address these problems with the engineering of synthetic biological circuits that provide selective control over immune function in response to inducers. In this research proposal, we design a next generation armored CAR T cell with a small molecule inducible cytokine circuit, combining different synthetic biology approaches from previous research on CAR T cells to enhance the safety of the therapy by providing a reversible, safe, and rapid method of modulating CAR T cell stimulation.

Keywords:

Armored CAR T-Cells, synNotch Receptor, Synthetic Cytokine Circuit, Research Proposal

Drew,D.;Li,X.;Su,M.;Wang,Q. (2023). Next generation armored CAR-T cells with a drug inducible cytokine circuit. Theoretical and Natural Science,24,178-185.
Export citation

References

[1]. World Health Organization: WHO. (2022). Cancer. www.who.int. https://www.who.int/news-room/fact-sheets/detail/cancer

[2]. Maalej, K. M., Merhi, M., Inchakalody, V. P., Mestiri, S., Alam, M., Maccalli, C., Cherif, H., Uddin, S., Steinhoff, M., Marincola, F. M., & Dermime, S. (2023). CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Molecular cancer, 22(1), 20. https://doi.org/10.1186/s12943-023-01723-z

[3]. Hawkins, E. R., D’Souza, R. R., & Klampatsa, A. (2021). Armored CAR T-Cells: The Next Chapter in T-Cell Cancer Immunotherapy. Biologics : targets & therapy, 15, 95–105. https://doi.org/10.2147/BTT.S291768

[4]. Manhas, J., Edelstein, H. I., Leonard, J. N., & Morsut, L. (2022). The evolution of synthetic receptor systems. Nature chemical biology, 18(3), 244–255. https://doi.org/10.1038/s41589-021-00926-z

[5]. Flugel, C. L., Majzner, R. G., Krenciute, G., Dotti, G., Riddell, S. R., Wagner, D. L., & Abou-El-Enein, M. (2023). Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nature reviews. Clinical oncology, 20(1), 49–62. https://doi.org/10.1038/s41571-022-00704-3

[6]. Li, H. S., Wong, N. M., Tague, E., Ngo, J. T., Khalil, A. S., & Wong, W. W. (2022). High-performance multiplex drug-gated CAR circuits. Cancer cell, 40(11), 1294–1305.e4. https://doi.org/10.1016/j.ccell.2022.08.008

[7]. Wu, Y., Liu, Y., Huang, Z., Wang, X., Jin, Z., Li, J., Limsakul, P., Zhu, L., Allen, M., Pan, Y., Bussell, R., Jacobson, A., Liu, T., Chien, S., & Wang, Y. (2021). Control of the activity of CAR-T cells within tumours via focused ultrasound. Nature biomedical engineering, 5(11), 1336–1347. https://doi.org/10.1038/s41551-021-00779-w

[8]. Allen, G. M., Frankel, N. W., Reddy, N. R., Bhargava, H. K., Yoshida, M. A., Stark, S. R., Purl, M., Lee, J., Yee, J. L., Yu, W., Li, A. W., Garcia, K. C., El-Samad, H., Roybal, K. T., Spitzer, M. H., & Lim, W. A. (2022). Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science (New York, N.Y.), 378(6625), eaba1624. https://doi.org/ 10.1126/science.aba1624

[9]. Smole, A., Benton, A., Poussin, M. A., Eiva, M. A., Mezzanotte, C., Camisa, B., Greco, B., Sharma, P., Minutolo, N. G., Gray, F., Bear, A. S., Baroja, M. L., Cummins, C., Xu, C., Sanvito, F., Goldgewicht, A. L., Blanchard, T., Rodriguez-Garcia, A., Klichinsky, M., Bonini, C., … Powell, D. J., Jr (2022). Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer cell, 40(12), 1470–1487.e7. https://doi.org/10.1016/ j.ccell.2022.11.006

[10]. Yang, Z. J., Yu, Z. Y., Cai, Y. M., Du, R. R., & Cai, L. (2020). Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Communications biology, 3(1), 116. https://doi.org/10.1038/s42003-020-0848-x


Cite this article

Drew,D.;Li,X.;Su,M.;Wang,Q. (2023). Next generation armored CAR-T cells with a drug inducible cytokine circuit. Theoretical and Natural Science,24,178-185.

Data availability

The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.

Disclaimer/Publisher's Note

The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

About volume

Volume title: Proceedings of the 3rd International Conference on Biological Engineering and Medical Science

ISBN:978-1-83558-221-3(Print) / 978-1-83558-222-0(Online)
Editor:Alan Wang
Conference website: https://www.icbiomed.org/
Conference date: 2 September 2023
Series: Theoretical and Natural Science
Volume number: Vol.24
ISSN:2753-8818(Print) / 2753-8826(Online)

© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license. Authors who publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See Open access policy for details).

References

[1]. World Health Organization: WHO. (2022). Cancer. www.who.int. https://www.who.int/news-room/fact-sheets/detail/cancer

[2]. Maalej, K. M., Merhi, M., Inchakalody, V. P., Mestiri, S., Alam, M., Maccalli, C., Cherif, H., Uddin, S., Steinhoff, M., Marincola, F. M., & Dermime, S. (2023). CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Molecular cancer, 22(1), 20. https://doi.org/10.1186/s12943-023-01723-z

[3]. Hawkins, E. R., D’Souza, R. R., & Klampatsa, A. (2021). Armored CAR T-Cells: The Next Chapter in T-Cell Cancer Immunotherapy. Biologics : targets & therapy, 15, 95–105. https://doi.org/10.2147/BTT.S291768

[4]. Manhas, J., Edelstein, H. I., Leonard, J. N., & Morsut, L. (2022). The evolution of synthetic receptor systems. Nature chemical biology, 18(3), 244–255. https://doi.org/10.1038/s41589-021-00926-z

[5]. Flugel, C. L., Majzner, R. G., Krenciute, G., Dotti, G., Riddell, S. R., Wagner, D. L., & Abou-El-Enein, M. (2023). Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nature reviews. Clinical oncology, 20(1), 49–62. https://doi.org/10.1038/s41571-022-00704-3

[6]. Li, H. S., Wong, N. M., Tague, E., Ngo, J. T., Khalil, A. S., & Wong, W. W. (2022). High-performance multiplex drug-gated CAR circuits. Cancer cell, 40(11), 1294–1305.e4. https://doi.org/10.1016/j.ccell.2022.08.008

[7]. Wu, Y., Liu, Y., Huang, Z., Wang, X., Jin, Z., Li, J., Limsakul, P., Zhu, L., Allen, M., Pan, Y., Bussell, R., Jacobson, A., Liu, T., Chien, S., & Wang, Y. (2021). Control of the activity of CAR-T cells within tumours via focused ultrasound. Nature biomedical engineering, 5(11), 1336–1347. https://doi.org/10.1038/s41551-021-00779-w

[8]. Allen, G. M., Frankel, N. W., Reddy, N. R., Bhargava, H. K., Yoshida, M. A., Stark, S. R., Purl, M., Lee, J., Yee, J. L., Yu, W., Li, A. W., Garcia, K. C., El-Samad, H., Roybal, K. T., Spitzer, M. H., & Lim, W. A. (2022). Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science (New York, N.Y.), 378(6625), eaba1624. https://doi.org/ 10.1126/science.aba1624

[9]. Smole, A., Benton, A., Poussin, M. A., Eiva, M. A., Mezzanotte, C., Camisa, B., Greco, B., Sharma, P., Minutolo, N. G., Gray, F., Bear, A. S., Baroja, M. L., Cummins, C., Xu, C., Sanvito, F., Goldgewicht, A. L., Blanchard, T., Rodriguez-Garcia, A., Klichinsky, M., Bonini, C., … Powell, D. J., Jr (2022). Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer cell, 40(12), 1470–1487.e7. https://doi.org/10.1016/ j.ccell.2022.11.006

[10]. Yang, Z. J., Yu, Z. Y., Cai, Y. M., Du, R. R., & Cai, L. (2020). Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Communications biology, 3(1), 116. https://doi.org/10.1038/s42003-020-0848-x