References
[1]. World Health Organization: WHO. (2022). Cancer. www.who.int. https://www.who.int/news-room/fact-sheets/detail/cancer
[2]. Maalej, K. M., Merhi, M., Inchakalody, V. P., Mestiri, S., Alam, M., Maccalli, C., Cherif, H., Uddin, S., Steinhoff, M., Marincola, F. M., & Dermime, S. (2023). CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Molecular cancer, 22(1), 20. https://doi.org/10.1186/s12943-023-01723-z
[3]. Hawkins, E. R., D’Souza, R. R., & Klampatsa, A. (2021). Armored CAR T-Cells: The Next Chapter in T-Cell Cancer Immunotherapy. Biologics : targets & therapy, 15, 95–105. https://doi.org/10.2147/BTT.S291768
[4]. Manhas, J., Edelstein, H. I., Leonard, J. N., & Morsut, L. (2022). The evolution of synthetic receptor systems. Nature chemical biology, 18(3), 244–255. https://doi.org/10.1038/s41589-021-00926-z
[5]. Flugel, C. L., Majzner, R. G., Krenciute, G., Dotti, G., Riddell, S. R., Wagner, D. L., & Abou-El-Enein, M. (2023). Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nature reviews. Clinical oncology, 20(1), 49–62. https://doi.org/10.1038/s41571-022-00704-3
[6]. Li, H. S., Wong, N. M., Tague, E., Ngo, J. T., Khalil, A. S., & Wong, W. W. (2022). High-performance multiplex drug-gated CAR circuits. Cancer cell, 40(11), 1294–1305.e4. https://doi.org/10.1016/j.ccell.2022.08.008
[7]. Wu, Y., Liu, Y., Huang, Z., Wang, X., Jin, Z., Li, J., Limsakul, P., Zhu, L., Allen, M., Pan, Y., Bussell, R., Jacobson, A., Liu, T., Chien, S., & Wang, Y. (2021). Control of the activity of CAR-T cells within tumours via focused ultrasound. Nature biomedical engineering, 5(11), 1336–1347. https://doi.org/10.1038/s41551-021-00779-w
[8]. Allen, G. M., Frankel, N. W., Reddy, N. R., Bhargava, H. K., Yoshida, M. A., Stark, S. R., Purl, M., Lee, J., Yee, J. L., Yu, W., Li, A. W., Garcia, K. C., El-Samad, H., Roybal, K. T., Spitzer, M. H., & Lim, W. A. (2022). Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science (New York, N.Y.), 378(6625), eaba1624. https://doi.org/ 10.1126/science.aba1624
[9]. Smole, A., Benton, A., Poussin, M. A., Eiva, M. A., Mezzanotte, C., Camisa, B., Greco, B., Sharma, P., Minutolo, N. G., Gray, F., Bear, A. S., Baroja, M. L., Cummins, C., Xu, C., Sanvito, F., Goldgewicht, A. L., Blanchard, T., Rodriguez-Garcia, A., Klichinsky, M., Bonini, C., … Powell, D. J., Jr (2022). Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer cell, 40(12), 1470–1487.e7. https://doi.org/10.1016/ j.ccell.2022.11.006
[10]. Yang, Z. J., Yu, Z. Y., Cai, Y. M., Du, R. R., & Cai, L. (2020). Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Communications biology, 3(1), 116. https://doi.org/10.1038/s42003-020-0848-x
Cite this article
Drew,D.;Li,X.;Su,M.;Wang,Q. (2023). Next generation armored CAR-T cells with a drug inducible cytokine circuit. Theoretical and Natural Science,24,178-185.
Data availability
The datasets used and/or analyzed during the current study will be available from the authors upon reasonable request.
Disclaimer/Publisher's Note
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of EWA Publishing and/or the editor(s). EWA Publishing and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
About volume
Volume title: Proceedings of the 3rd International Conference on Biological Engineering and Medical Science
© 2024 by the author(s). Licensee EWA Publishing, Oxford, UK. This article is an open access article distributed under the terms and
conditions of the Creative Commons Attribution (CC BY) license. Authors who
publish this series agree to the following terms:
1. Authors retain copyright and grant the series right of first publication with the work simultaneously licensed under a Creative Commons
Attribution License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this
series.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the series's published
version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial
publication in this series.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and
during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See
Open access policy for details).
References
[1]. World Health Organization: WHO. (2022). Cancer. www.who.int. https://www.who.int/news-room/fact-sheets/detail/cancer
[2]. Maalej, K. M., Merhi, M., Inchakalody, V. P., Mestiri, S., Alam, M., Maccalli, C., Cherif, H., Uddin, S., Steinhoff, M., Marincola, F. M., & Dermime, S. (2023). CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging therapeutic advances. Molecular cancer, 22(1), 20. https://doi.org/10.1186/s12943-023-01723-z
[3]. Hawkins, E. R., D’Souza, R. R., & Klampatsa, A. (2021). Armored CAR T-Cells: The Next Chapter in T-Cell Cancer Immunotherapy. Biologics : targets & therapy, 15, 95–105. https://doi.org/10.2147/BTT.S291768
[4]. Manhas, J., Edelstein, H. I., Leonard, J. N., & Morsut, L. (2022). The evolution of synthetic receptor systems. Nature chemical biology, 18(3), 244–255. https://doi.org/10.1038/s41589-021-00926-z
[5]. Flugel, C. L., Majzner, R. G., Krenciute, G., Dotti, G., Riddell, S. R., Wagner, D. L., & Abou-El-Enein, M. (2023). Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nature reviews. Clinical oncology, 20(1), 49–62. https://doi.org/10.1038/s41571-022-00704-3
[6]. Li, H. S., Wong, N. M., Tague, E., Ngo, J. T., Khalil, A. S., & Wong, W. W. (2022). High-performance multiplex drug-gated CAR circuits. Cancer cell, 40(11), 1294–1305.e4. https://doi.org/10.1016/j.ccell.2022.08.008
[7]. Wu, Y., Liu, Y., Huang, Z., Wang, X., Jin, Z., Li, J., Limsakul, P., Zhu, L., Allen, M., Pan, Y., Bussell, R., Jacobson, A., Liu, T., Chien, S., & Wang, Y. (2021). Control of the activity of CAR-T cells within tumours via focused ultrasound. Nature biomedical engineering, 5(11), 1336–1347. https://doi.org/10.1038/s41551-021-00779-w
[8]. Allen, G. M., Frankel, N. W., Reddy, N. R., Bhargava, H. K., Yoshida, M. A., Stark, S. R., Purl, M., Lee, J., Yee, J. L., Yu, W., Li, A. W., Garcia, K. C., El-Samad, H., Roybal, K. T., Spitzer, M. H., & Lim, W. A. (2022). Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science (New York, N.Y.), 378(6625), eaba1624. https://doi.org/ 10.1126/science.aba1624
[9]. Smole, A., Benton, A., Poussin, M. A., Eiva, M. A., Mezzanotte, C., Camisa, B., Greco, B., Sharma, P., Minutolo, N. G., Gray, F., Bear, A. S., Baroja, M. L., Cummins, C., Xu, C., Sanvito, F., Goldgewicht, A. L., Blanchard, T., Rodriguez-Garcia, A., Klichinsky, M., Bonini, C., … Powell, D. J., Jr (2022). Expression of inducible factors reprograms CAR-T cells for enhanced function and safety. Cancer cell, 40(12), 1470–1487.e7. https://doi.org/10.1016/ j.ccell.2022.11.006
[10]. Yang, Z. J., Yu, Z. Y., Cai, Y. M., Du, R. R., & Cai, L. (2020). Engineering of an enhanced synthetic Notch receptor by reducing ligand-independent activation. Communications biology, 3(1), 116. https://doi.org/10.1038/s42003-020-0848-x