Volume 5

Published on June 2023

Volume title: Proceedings of the 3rd International Conference on Signal Processing and Machine Learning

Conference website: http://www.confspml.org
ISBN:978-1-915371-57-7(Print) / 978-1-915371-58-4(Online)
Conference date: 25 February 2023
Editor:Omer Burak Istanbullu
Research Article
Published on 31 May 2023 DOI: 10.54254/2755-2721/5/20230511
Xiaohan Hou
DOI: 10.54254/2755-2721/5/20230511

The aim of developing the technology of "image captioning," which integrates natural language and computer processing, is to automatically give descriptions for photographs by the machine itself. The work can be separated into two parts, which depends on correctly comprehending both language and images from a semantic and syntactic perspective. In light of the growing body of information on the subject, it is getting harder to stay abreast of the most recent advancements in the area of image captioning. Nevertheless, the review papers that are now available don't go into enough detail about those findings. The approaches, benchmarks, datasets, and assessment metrics currently in use for picture captioning are reviewed in this work. The majority of the field's ongoing study is concentrated on robust learning-based techniques, where deep reinforcement, adversarial learning, and attention processes all seem to be at the heart of this research area. Image captioning entails a brand-new field in research on computer vision. Generating a comprehensive natural language description for the source images is the fundamental issue of image captioning. This essay explores and evaluates earlier work on image captioning. Image captioning's application and task situations are introduced. The merits and disadvantages of each approach are explored after the analysis of the image captioning algorithms based on encoder-decoder and template structure. The assessment and baseline dataset for picture captioning are therefore shown. Ultimately, prospects for image captioning's progress are presented.

Show more
View pdf
Hou,X. (2023). To describe the content of image: The view from image captioning. Applied and Computational Engineering,5,1-10.
Export citation
Research Article
Published on 30 May 2023 DOI: 10.54254/2755-2721/5/20230515
Hongyun Zhu
DOI: 10.54254/2755-2721/5/20230515

With the rapid development of the Internet and e-commerce, recommender systems have received great attention and wide application in this environment. Because it is difficult for people to choose the one that they like in the face of the dazzling array of items on the Internet, and these e-commerce sites also need to consider how to improve efficiency, the recommendation system is an excellent solution. This paper mainly reviewed the development of recommender systems, focusing on the research and experiments of a recommender system based on an item-based collaborative filtering algorithm. According to the experimental results and some previous studies, summarizing the advantages and disadvantages of this method, proposing some solutions, and pointing out some problems that will be faced by future researches on recommendation systems.

Show more
View pdf
Zhu,H. (2023). RS on video games based on item-based collaborative filtering algorithm. Applied and Computational Engineering,5,11-17.
Export citation
Research Article
Published on 31 May 2023 DOI: 10.54254/2755-2721/5/20230517
Chuanyi Zhao
DOI: 10.54254/2755-2721/5/20230517

Recent advancements in the study of posttraumatic stress disorder (PTSD) have led to the discovery of innovative improvements to therapies that have already received empirical validation. The purpose of this paper is to investigate the theoretical feasibility and expected effects of a new treatment approach for the adolescent PTSD patient population that combines VR virtual reality technology with traditional treatment modalities by referring to relevant studies, literature, and survey feedback from the relevant groups. The main focus is on the use of virtual reality technology to address the reluctance of the adolescent patient population to accept treatment and to explore other possibilities for the development of a relevant target population. The limitations and drawbacks of current VR systems in the treatment of psychological disorders are also discussed, but theoretical solutions are also given. The specific role of the senses in the theoretical model and the role and usefulness for patients, physicians, and others, respectively, are also given.

Show more
View pdf
Zhao,C. (2023). A novel treatment program for adolescents with post traumatic stress disorder with virtual reality technology. Applied and Computational Engineering,5,18-22.
Export citation
Research Article
Published on 31 May 2023 DOI: 10.54254/2755-2721/5/20230518
Zihan Ding
DOI: 10.54254/2755-2721/5/20230518

A heuristic global optimization algorithm is the Ant colony algorithm, with several advantages, such as robustness, so the algorithm can be used in many fields of our daily life. This article briefly explains some of the principles of the basic ant colony algorithm, and a detailed analysis of the representative improved algorithm models, is carried out. Moreover, the research status of Ant Colony Algorithm in several fields, like travelling salesman problem, path planning problem, routing problem are also summarized in this paper.

Show more
View pdf
Ding,Z. (2023). Review of application on improved ant colony algorithm. Applied and Computational Engineering,5,23-27.
Export citation
Research Article
Published on 31 May 2023 DOI: 10.54254/2755-2721/5/20230519
Xinyu Shao
DOI: 10.54254/2755-2721/5/20230519

All industries employ machine learning extensively, and one of the most promising fields is computer vision. Computer vision is a simulation of the human visual system that uses cameras and computers to take the role of the human eye to find the target, follow it, and gather data from it so that a decision may be made on whether to take further action or provide recommendations. The various uses of computer vision in sports are covered in this paper. Currently, computer vision is mostly utilized for broadcast enhancement, tracking and detection of players and balls. Although the game’s graphics has been substantially improved by this technology, there are still several flaws. For instance, some areas are not suited to employ this technology. Another is the issue of players being blocked in multiplayer sports. For broadcasters, computer vision has significant commercial value. For athletes, this technique can improve their performance.

Show more
View pdf
Shao,X. (2023). Review of computer vision in sports. Applied and Computational Engineering,5,28-33.
Export citation
Research Article
Published on 31 May 2023 DOI: 10.54254/2755-2721/5/20230525
Alexander Zhou
DOI: 10.54254/2755-2721/5/20230525

As the gaming industry gradually expands, more and more people begin taking notice of the industry. Though with blossom, problems emerge. Many people don’t want to take the time to master a video game, so some will then resort to cheating. This is terrible news for developers as it ruins their reputation and player base. This paper will lay the groundwork for anyone interested in the industry on what has already been done to fight cheaters, as little research was conducted. This paper, will introduce the modern online connection architecture, categorize the most common cheats, and most importantly, introduce modern-day anti-cheat methods. The anti-cheat methods will be analyzed on their effectiveness on different online connection architecture and the type of cheat it works against. Lastly, the paper will also introduce the idea of kernel-level and its impact on anti-cheat.

Show more
View pdf
Zhou,A. (2023). A never ending warfare: Fighting cheaters in online video game. Applied and Computational Engineering,5,34-39.
Export citation
Research Article
Published on 31 May 2023 DOI: 10.54254/2755-2721/5/20230526
Chunxu MU
DOI: 10.54254/2755-2721/5/20230526

With the popularization and development of the concept of artificial intelligence, the application of artificial intelligence has also begun to deepen into people's lives. While bringing convenience to people, it has also made some people worry about whether artificial intelligence will replace humans. Therefore, In order to make people understand the current development status and bottlenecks of artificial intelligence more intuitively, as well as the difference between artificial intelligence and human brain, this article will turn from speech recognition and natural language processing, human-computer dialogue, image recognition, and machine learning ability, that is, machine listening, reading, and thinking four aspects of research and discussion, and finally summarize why artificial intelligence cannot completely surpass humans.

Show more
View pdf
MU,C. (2023). Based on natural language processing, human-computer dialogue, image recognition, and machine learning analysis whether artificial intelligence will surpass the human brain. Applied and Computational Engineering,5,40-47.
Export citation
Research Article
Published on 31 May 2023 DOI: 10.54254/2755-2721/5/20230527
Ningyan Zhang
DOI: 10.54254/2755-2721/5/20230527

As human approaches the big data period, artificial intelligence becomes dominating in almost every domain. As part of machine learning, reinforcement learning (RL) is intended to utilize mutual communication experiences around the world and assess feedback to strengthen human ability in decision-making. Unlike traditional supervised learning, RL is able to sample, assess and order the delayed feedback decision-making at the same time. This characteristic of RL makes it powerful when it comes to exploring a solution in the medical field. This paper investigates the wide application of RL in the medical field. Including two major parts of the medical field: artificial diagnosis and precision medicine, this paper first introduces several algorithms of RL in each part, then states the inefficiency and unsolved difficulty in this area, together with the future investigation direction of RL. This paper provides researchers with multiple feasible algorithms, supported methods and theoretical analysis, which pave the way for future development of reinforcement learning in medical field.

Show more
View pdf
Zhang,N. (2023). Analysis of reinforce learning in medical treatment. Applied and Computational Engineering,5,48-53.
Export citation
Research Article
Published on 31 May 2023 DOI: 10.54254/2755-2721/5/20230528
Jing An, Xue chao Zhang, Chun lan You
DOI: 10.54254/2755-2721/5/20230528

Scientific and reasonable analysis and determination of operational capability requirements can not only optimize and improve the operational concept, but also ensure the transformation and application of the operational concept. The development and construction of the traction force and the improvement of operational capability play a key role in the transformation of operational theory to actual combat capability. It is urgent to study scientific and applicable operational capability requirements analysis methods to support the development process of the operational concept. On the basis of defining the components of operational capability requirements, this paper combs, summarizes, analyzes and compares the main operational capability requirements analysis methods, points out the problems of existing analysis methods in combination with current research, and summarizes and prospects the next research direction.

Show more
View pdf
An,J.;Zhang,X.C.;You,C.L. (2023). Overview of capability requirement analysis methods for operational concept development. Applied and Computational Engineering,5,54-61.
Export citation
Research Article
Published on 31 May 2023 DOI: 10.54254/2755-2721/5/20230529
Zihang Huang
DOI: 10.54254/2755-2721/5/20230529

Following the ever increasing trend in social media such as Twitter, Facebook, and Instagram, automatic analysis of people’s conversations and languages have become a problem of great significance for businesses and governments in attempt to understand and analyze people’s habits, thoughts, and patterns towards different subjects of interests. Within the field of natural language processing, sarcasm detection has always been a difficult challenge for sentiment analysis. Recent years, there has been great interests shown by researchers towards sarcasm detection. Neural networks achieve huge success and advancements surrounding this topic, but reviews for this task are very limited and there’s a lack of comprehensive review of the development of sarcasm detection so far. Thus, this paper aims to summarize and present the various methods directed towards sarcasm detection, the progress it has made, and examination of potential problems and availability for further improvements.

Show more
View pdf
Huang,Z. (2023). Detecting sarcastic expressions with deep neural networks. Applied and Computational Engineering,5,62-68.
Export citation